61 research outputs found

    Class-Incremental Grouping Network for Continual Audio-Visual Learning

    Full text link
    Continual learning is a challenging problem in which models need to be trained on non-stationary data across sequential tasks for class-incremental learning. While previous methods have focused on using either regularization or rehearsal-based frameworks to alleviate catastrophic forgetting in image classification, they are limited to a single modality and cannot learn compact class-aware cross-modal representations for continual audio-visual learning. To address this gap, we propose a novel class-incremental grouping network (CIGN) that can learn category-wise semantic features to achieve continual audio-visual learning. Our CIGN leverages learnable audio-visual class tokens and audio-visual grouping to continually aggregate class-aware features. Additionally, it utilizes class tokens distillation and continual grouping to prevent forgetting parameters learned from previous tasks, thereby improving the model's ability to capture discriminative audio-visual categories. We conduct extensive experiments on VGGSound-Instruments, VGGSound-100, and VGG-Sound Sources benchmarks. Our experimental results demonstrate that the CIGN achieves state-of-the-art audio-visual class-incremental learning performance. Code is available at https://github.com/stoneMo/CIGN.Comment: ICCV 2023. arXiv admin note: text overlap with arXiv:2303.1705

    LAVSS: Location-Guided Audio-Visual Spatial Audio Separation

    Full text link
    Existing machine learning research has achieved promising results in monaural audio-visual separation (MAVS). However, most MAVS methods purely consider what the sound source is, not where it is located. This can be a problem in VR/AR scenarios, where listeners need to be able to distinguish between similar audio sources located in different directions. To address this limitation, we have generalized MAVS to spatial audio separation and proposed LAVSS: a location-guided audio-visual spatial audio separator. LAVSS is inspired by the correlation between spatial audio and visual location. We introduce the phase difference carried by binaural audio as spatial cues, and we utilize positional representations of sounding objects as additional modality guidance. We also leverage multi-level cross-modal attention to perform visual-positional collaboration with audio features. In addition, we adopt a pre-trained monaural separator to transfer knowledge from rich mono sounds to boost spatial audio separation. This exploits the correlation between monaural and binaural channels. Experiments on the FAIR-Play dataset demonstrate the superiority of the proposed LAVSS over existing benchmarks of audio-visual separation. Our project page: https://yyx666660.github.io/LAVSS/.Comment: Accepted by WACV202

    Efficiently Leveraging Linguistic Priors for Scene Text Spotting

    Full text link
    Incorporating linguistic knowledge can improve scene text recognition, but it is questionable whether the same holds for scene text spotting, which typically involves text detection and recognition. This paper proposes a method that leverages linguistic knowledge from a large text corpus to replace the traditional one-hot encoding used in auto-regressive scene text spotting and recognition models. This allows the model to capture the relationship between characters in the same word. Additionally, we introduce a technique to generate text distributions that align well with scene text datasets, removing the need for in-domain fine-tuning. As a result, the newly created text distributions are more informative than pure one-hot encoding, leading to improved spotting and recognition performance. Our method is simple and efficient, and it can easily be integrated into existing auto-regressive-based approaches. Experimental results show that our method not only improves recognition accuracy but also enables more accurate localization of words. It significantly improves both state-of-the-art scene text spotting and recognition pipelines, achieving state-of-the-art results on several benchmarks.Comment: 10 page
    • …
    corecore