60 research outputs found

    Combination Therapy of Amlodipine and Atorvastatin Has More Beneficial Vascular Effects Than Monotherapy in Salt-Sensitive Hypertension

    No full text
    BACKGROUND Current treatment for the secondary prevention of cardiovascular diseases frequently involves the prescription of several combination therapies, particularly antihypertensive medications and HMG-CoA reductase inhibitor. We have previously shown that in salt-sensitive hypertension either a statin or the calcium channel blocker amlodipine (Aml) have vasoprotective effects. Here, we investigated in aortas from Dahl salt-sensitive (DS) rats the effects of Aml, the statin atorvastatin (AT), and their combination on endothelial function, superoxide (O2−) production, and the expression of endothelial nitric oxide synthase (eNOS), chemokine monocyte chemoattractant protein-1 (MCP-1), and lectin-like oxidized LDL receptor-1 (LOX-1). METHODS Groups of DS rats were fed either normal-salt (NS, 0.5% NaCl) or high-salt (HS, 4% NaCl) diet or a HS diet with AT (15mg/kg/day), Aml (5mg/kg/day) or combination of AT/Aml for 6 weeks. RESULTS Rats on the HS diet developed hypertension, aortic hypertrophy, accompanied by increased plasma C-reactive protein (CRP), aortic O2−, MCP-1 (80%), and LOX-1 (55%) expression and reduced eNOS and endothelial-dependent relaxation to acetylcholine (EDR). Aml reduced systolic blood pressure (SBP), aortic hypertrophy, plasma CRP, vascular O2−, and MCP-1 expression and improved eNOS and EDR. AT reduced aortic hypertrophy and plasma CRP, improved EDR, and normalized vascular O2−, eNOS, and proinflammatory gene expression with mild reduction in SBP. Combination therapy further reduced the SBP and normalized aortic hypertrophy, EDR, and plasma CRP. CONCLUSIONS The combination therapy of Aml/AT has an additive beneficial effect on the vasculature. These novel findings may provide scientific basis for the combination therapy of statins with antihypertensive agents to reduce and prevent cardiovascular diseases

    Novel three-dimensional biochip pulmonary sarcoidosis model.

    No full text
    Sarcoidosis is a multi-system disorder of granulomatous inflammation which most commonly affects the lungs. Its etiology and pathogenesis are not well defined in part due to the lack of reliable modeling. Here, we present the development of an in vitro three-dimensional lung-on-chip biochip designed to mimic granuloma formation. A lung on chip fluidic macrodevice was developed and added to our previously developed a lung-on-membrane model (LOMM). Granulomas were cultured from blood samples of patients with sarcoidosis and then inserted in the air-lung-interface of the microchip to create a three-dimensional biochip pulmonary sarcoidosis model (3D BSGM). Cytokines were measured after 48 hours. ELISA testing was performed to measure cytokine response difference between LOMM with 3D BSGM. There were statistically significant differences in IL-1ß (P = 0.001953), IL-6 (P = 0.001953), GM-CSF (P = 0.001953), and INF-γ expressions (P = 0.09375) between two groups. The current model represents the first 3D biochip sarcoidosis model created by adding a microfluidics system to a dual-chambered lung on membrane model and introducing developed sarcoid-granuloma to its air-lung-interface

    Anti-inflammatory Properties of the Alpha-Melanocyte-Stimulating Hormone in Models of Granulomatous Inflammation

    No full text
    PURPOSE: Alpha-melanocyte stimulating hormone (α-MSH) is known to have anti-inflammatory effects. However, the anti-inflammatory properties of α-MSH on normal bronchial epithelial cells are largely unknown, especially in the context of in vitro sarcoidosis models. METHODS: We evaluated the anti-inflammatory effects of α-MSH on two different in vitro sarcoidosis models (lung-on-membrane model; LOMM and three-dimensional biochip pulmonary sarcoidosis model; 3D-BSGM) generated from NBECs and an in vivo sarcoidosis mouse model. RESULTS: Treatment with α-MSH decreased inflammatory cytokine levels and downregulated type I interferon pathway genes and related proteins in LOMM and 3D-BSGM models. Treatment with α-MSH also significantly decreased macrophages and cytotoxic T-cells counts in a sarcoidosis mice model. CONCLUSION: Our results confirm the direct role of type I IFNs in the pathogenesis of sarcoid lung granulomas and highlight α-MSH as a potential novel therapeutic agent for treating pulmonary sarcoidosis. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00408-022-00546-x
    corecore