47 research outputs found
A load-balancing mechanism for distributed SDN control plane using response time.
Software-Defined Networking (SDN) has become a popular paradigm for managing large-scale networks including cloud servers and data centers because of its advantages of centralized management and programmability. The issues of scalability and reliability that a single centralized controller suffers makes distributed controller architectures emerge. One key limitation of distributed controllers is the statically configured switch-controller mapping, easily causing uneven load distribution among controllers. Previous works have proposed load-balancing methods with switch migration to address this issue. However, the higher-load controller is always directly considered as the overloaded controller that need to shift its load to other controllers, even if it has no response time delay. The pursuit of absolute load-balancing effect can also result in frequent network delays and service interruptions. Additionally, if there are several overloaded controllers, just one controller with the maximum load can be addressed within a single load-balancing operation, reducing load-balancing efficiency. To address these problems, we propose SMCLBRT, a load-balancing strategy of multiple SDN controllers based on response time, considering the changing features of real-time response times versus controller loads. By selecting the appropriate response time threshold and dealing with multiple overloading controllers simultaneously, it can well solve load-balancing problem in SDN control plane with multiple overloaded controllers. Simulation experiments exhibit the effectiveness of our scheme.N/
Geochemical reactions altering the mineralogical and multiscale pore characteristics of uranium-bearing reservoirs during CO2 + O2in situ leaching
CO2 + O2in situ leaching has been extensively applied in uranium recovery in sandstone-type uranium deposits of China. The geochemical processes impact and constrain the leaching reaction and leaching solution migration; thus, it is necessary to study the CO2 + O2–water–rock geochemical reaction process and its influence on the physical properties of uranium-bearing reservoirs. In this work, a CO2 + O2–water–rock geochemical reaction simulation experiment was carried out, and the mineralogical and multiscale pore characteristics of typical samples before and after this simulation experiment were compared by X-ray diffraction and high-pressure mercury intrusion porosimetry (HPMIP). The results show that the CO2 + O2–water–rock geochemical reaction has complicated effects on the mineral compositions due to the various reaction modes and types. After the CO2 + O2–water–rock geochemical reaction, the femic minerals decrease and the clay minerals in the coarse sandstone, medium sandstone, fine sandstone, and siltstone increase, while the femic minerals and clay minerals in sandy mudstone show a contrary changing trend. The CO2 + O2–water–rock geochemical reaction decreases the total pore volume of uranium-bearing reservoirs and then promotes pore transformation from small scale to large scale. The fractal dimensions of macropores are decreased, and the fractal dimensions of mesopores, transition pores, and micropores are increased. The effects of felsic mineral and carbonate dissolution, secondary mineral precipitate, clay mineral swelling, and mineral particle migration are simultaneously present in the CO2 + O2in situ leaching process, which exhibit the positive transformation and the negative transformation for the uranium-bearing reservoirs. The mineral dissolution may improve reservoir permeability to a certain degree, while the siltation effect will gradually reveal with the extension of CO2 + O2in situ leaching. This research will provide a deep understanding of the physical property response of uranium-bearing reservoirs during CO2 + O2in situ leaching and indicate the direction for the efficient recovery of uranium resources
Mutations in TUBB8 and Human Oocyte Meiotic Arrest
BACKGROUND Human reproduction depends on the fusion of a mature oocyte with a sperm cell to form a fertilized egg. The genetic events that lead to the arrest of human oocyte maturation are unknown.
METHODS We sequenced the exomes of five members of a four-generation family, three of whom had infertility due to oocyte meiosis I arrest. We performed Sanger sequencing of a candidate gene, TUBB8, in DNA samples from these members, additional family members, and members of 23 other affected families. The expression of TUBB8 and all other β-tubulin isotypes was assessed in human oocytes, early embryos, sperm cells, and several somatic tissues by means of a quantitative reverse- transcriptase–polymerase-chain-reaction assay. We evaluated the effect of the TUBB8 mutations on the assembly of the heterodimer consisting of one α-tubulin polypeptide and one β-tubulin polypeptide (α/β-tubulin heterodimer) in vitro, on microtubule architecture in HeLa cells, on microtubule dynamics in yeast cells, and on spindle assembly in mouse and human oocytes.
RESULTS We identified seven mutations in the primate-specific gene TUBB8 that were responsible for oocyte meiosis I arrest in 7 of the 24 families. TUBB8 expression is unique to oocytes and the early embryo, in which this gene accounts for almost all the expressed β-tubulin. The mutations affect chaperone-dependent folding and assembly of the α/β-tubulin heterodimer, disrupt microtubule behavior on expression in cultured cells, alter microtubule dynamics in vivo, and cause catastrophic spindle-assembly defects and maturation arrest on expression in mouse and human oocytes.
CONCLUSIONS TUBB8 mutations have dominant-negative effects that disrupt microtubule behavior and oocyte meiotic spindle assembly and maturation, causing female infertility. (Funded by the National Basic Research Program of China and others.
Oncogenic Function of DACT1 in Colon Cancer through the Regulation of β-catenin
The Wnt/β-catenin signaling pathway plays important roles in the progression of colon cancer. DACT1 has been identified as a modulator of Wnt signaling through its interaction with Dishevelled (Dvl), a central mediator of both the canonical and noncanonical Wnt pathways. However, the functions of DACT1 in the WNT/β-catenin signaling pathway remain unclear. Here, we present evidence that DACT1 is an important positive regulator in colon cancer through regulating the stability and sublocation of β-catenin. We have shown that DACT1 promotes cancer cell proliferation in vitro and tumor growth in vivo and enhances the migratory and invasive potential of colon cancer cells. Furthermore, the higher expression of DACT1 not only increases the nuclear and cytoplasmic fractions of β-catenin, but also increases its membrane-associated fraction. The overexpression of DACT1 leads to the increased accumulation of nonphosphorylated β-catenin in the cytoplasm and particularly in the nuclei. We have demonstrated that DACT1 interacts with GSK-3β and β-catenin. DACT1 stabilizes β-catenin via DACT1-induced effects on GSK-3β and directly interacts with β-catenin proteins. The level of phosphorylated GSK-3β at Ser9 is significantly increased following the elevated expression of DACT1. DACT1 mediates the subcellular localization of β-catenin via increasing the level of phosphorylated GSK-3β at Ser9 to inhibit the activity of GSK-3β. Taken together, our study identifies DACT1 as an important positive regulator in colon cancer and suggests a potential strategy for the therapeutic control of the β-catenin-dependent pathway
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Study on the instability mechanism and control technology of narrow coal pillar in double-roadway layout of Changping mine
Abstract To address the issue of roadway support failure in narrow coal pillars under dual-lane layout, this study takes the 4309 working face of Changping Coal Mine as the engineering background and employs theoretical calculations, numerical simulations, and on-site monitoring to investigate the instability mechanisms of narrow coal pillars under dual-lane conditions and to optimize technical solutions. The results indicate that the internal stress distribution within the coal pillar is influenced by the advanced support stress, and as the working face advances, the gradually increasing advanced support pressure causes the vertical stress peak within the coal pillar to shift away from the goaf area. Computational analysis reveals that the vertical stress in the top region of a 6 m narrow coal pillar is 38% higher than that in the bottom region, with an average stress of 16 MPa in the coal pillar. The asymmetric high-level stress concentration within the coal pillar significantly affects its stability. A UDEC (Universal Distinct Element Code) model was established to compare four simulation schemes with cut-off angles of 0°, 5°, 10°, and 15°. Based on the analysis of damage parameters and fracture distribution in the narrow coal pillar roadway, it was concluded that the stability is best when the cut-off angle is 10°. The dense drilling cut-off unloading technology was applied to the 4309 working face of the Changping Mine based on the aforementioned research. On-site monitoring results show that the relative deformation of the roof and bottom plates and the two sides of the test section were controlled within 267 mm and 198 mm, respectively, effectively resolving the deformation and instability issues of the narrow coal pillars
A Full Stage Data Augmentation Method in Deep Convolutional Neural Network for Natural Image Classification
Nowadays, deep learning has achieved remarkable results in many computer vision related tasks, among which the support of big data is essential. In this paper, we propose a full stage data augmentation framework to improve the accuracy of deep convolutional neural networks, which can also play the role of implicit model ensemble without introducing additional model training costs. Simultaneous data augmentation during training and testing stages can ensure network optimization and enhance its generalization ability. Augmentation in two stages needs to be consistent to ensure the accurate transfer of specific domain information. Furthermore, this framework is universal for any network architecture and data augmentation strategy and therefore can be applied to a variety of deep learning based tasks. Finally, experimental results about image classification on the coarse-grained dataset CIFAR-10 (93.41%) and fine-grained dataset CIFAR-100 (70.22%) demonstrate the effectiveness of the framework by comparing with state-of-the-art results
A Location Prediction-Based Helper Selection Scheme for Suspicious Eavesdroppers
This paper aims to improve security performance of data transmission with a mobile eavesdropper in a wireless network. The instantaneous channel state information (CSI) of the mobile eavesdropper is unknown to legitimate users during the communication process. Different from existing work, we intend to reduce power consumption of friendly jamming signals. Motivated by the goal, this work presents a location-based prediction scheme to predict where the eavesdropper will be later and to decide whether a friendly jamming measure should be selected against the eavesdropper. The legitimate users only take the measure when the prediction result shows that there will be a risk during data transmission. According to the proposed method, system power can be saved to a large degree. Particularly, we first derive the expression of the secrecy outage probability and set a secrecy performance target. After providing a Markov mobile model of an eavesdropper, we design a prediction scheme to predict its location, so as to decide whether to employ cooperative jamming or not, and then design a power allocation scheme and a fast suboptimal helper selection method to achieve targeted and efficient cooperative jamming. Finally, numerical simulation results demonstrate the effectiveness of the proposed schemes