12 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Editorial Commentary on the IJGI Special Issue “Mapping Indigenous Knowledge in the Digital Age”

    No full text
    Indigenous mapping is rapidly entering the domain of cartography, and digital technology is facilitating the engagement of communities, particularly Indigenous communities, in order to map their own locational stories, histories, cultural heritage, and environmental and political priorities [...

    Meeting the Challenges of the UN Sustainable Development Goals through Holistic Systems Thinking and Applied Geospatial Ethics

    No full text
    The halfway point for the implementation of the United Nations Sustainable Development Goals (SDGs) was marked in 2023, as set forth in the 2030 Agenda. Geospatial technologies have proven indispensable in assessing and tracking fundamental components of each of the 17 SDGs, including climatological and ecological trends, and changes and humanitarian crises and socio-economic impacts. However, gaps remain in the capacity for geospatial and related digital technologies, like AI, to provide a deeper, more comprehensive understanding of the complex and multi-factorial challenges delineated in the SDGs. Lack of progress toward these goals, and the immense implementation challenges that remain, call for inclusive and holistic approaches, coupled with transformative uses of digital technologies. This paper reviews transdisciplinary, holistic, and participatory approaches to address gaps in ethics and diversity in geospatial and related technologies and to meet the pressing need for bottom-up, community-driven initiatives. Small-scale, community-based initiatives are known to have a systemic and aggregate effect toward macro-economic and global environmental goals. Cybernetic systems thinking approaches are the conceptual framework investigated in this study, as these approaches suggest that a decentralized, polycentric system—for example, each community acting as one node in a larger, global system—has the resilience and capacity to create and sustain positive change, even if it is counter to top-down decisions and mechanisms. Thus, this paper will discuss how holistic systems thinking—societal, political, environmental, and economic choices considered in an interrelated context—may be central to building true resilience to climate change and creating sustainable development pathways. Traditional and Indigenous knowledge (IK) systems around the world hold holistic awareness of human-ecological interactions—practicable, reciprocal relationships developed over time as a cultural approach. This cultural holistic approach is also known as Systemic Literacy, which considers how systems function beyond “mechanical” aspects and include political, philosophical, psychological, emotional, relational, anthropological, and ecological dimensions. When Indigenous-led, these dimensions can be unified into participatory, community-centered conservation practices that support long-term human and environmental well-being. There is a growing recognition of the criticality of Indigenous leadership in sustainability practices, as well as that partnerships with Indigenous peoples and weaving knowledge systems, as a missing link to approaching global ecological crises. This review investigates the inequality in technological systems—the “digital divide” that further inhibits participation by communities and groups that retain knowledge of “place” and may offer the most transformative solutions. Following the review and synthesis, this study presents cybernetics as a bridge of understanding to Indigenous systems thinking. As non-Indigenous scholars, we hope that this study serves to foster informed, productive, and respectful dialogues so that the strength of diverse knowledges might offer whole-systems approaches to decision making that tackle wicked problems. Lastly, we discuss use cases of community-based processes and co-developed geospatial technologies, along with ethical considerations, as avenues toward enhancing equity and making advances in democratizing and decolonizing technology

    Dynamic Radiographs in Assessing Stability of Cervical Spine Fractures: A Multicentre Study

    No full text
    BACKGROUND: In the management of a trauma patient with cervical spine injury, the need for accurate diagnostic imaging is key to ensure correct management. Different classification systems have been developed including the Subaxial Injury Classification (SLIC) system and AO cervical spine fracture classification. Through a multicentre study, we have identified a group of cases where the use of CT alone to classify fractures by either SLIC or AO score may be deficient and the use of dynamic cervical spine radiographs could help identify instability. METHODS: Three level 1 trauma centers retrospectively reviewed patients with cervical spine injuries. Cervical spine radiographs (AP and lateral) were undertaken in collar, in all patients with suspected cervical spine injury within 2 weeks, followed by reanalysis of scoring systems. RESULTS: Eleven cases were identified in total, and 72% were male with a mean age of 65 years, with approximately 54% being older than 70 years. All patients reported their pain as severe using the Visual Analogue Scale scale. The predynamic radiograph mean SLIC score was 0.73, which is in contrast to the postdynamic radiograph mean SLIC score of 6. The statistical significance (P = 0.004) was found using the Wilcoxon signed-rank test. CONCLUSION: Supine imaging eliminates the gravitational loads normally exerted on the c-spine. The cases show assumed cervical stability based on CT, but dynamic c-spine radiographs subsequently demonstrated instability. Therefore, we suggest a combination of SLIC and AO classification using radiologic imaging to classify fracture and correlate clinical symptoms with persistent neck pain, which warrants a Miami-J collar and dynamic c-spine radiograph to assess stability with re-evaluation of scoring.Published version, accepted version (12 month embargo)Supports Open Acces

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    No full text
    Background: Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods: This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was coprioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low-middle-income countries. Results: In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of 'single-use' consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low-middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion: This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high- and low-middle-income countries

    Elective surgical services need to start planning for summer pressures.

    Get PDF

    WTO must ban harmful fisheries subsidies

    No full text
    corecore