12 research outputs found

    Intramolecular thermal stepwise [2 + 2] cycloadditions: investigation of a stereoselective synthesis of [n.2.0]-bicyclolactones

    Get PDF
    YesFused cyclobutanes are found in a range of natural products and formation of these motifs in a straightforward and easy manner represents an interesting synthetic challenge. To this end we investigated an intramolecular variant of the thermal enamine [2 + 2] cyclisation, developing a diastereoselective intramolecular enamine [2 + 2] cyclisation furnishing δ lactone and lactam fused cyclobutenes in good yield and excellent diastereoselectivity.The work was funded by Yorkshire Cancer Researc

    NUDT15-mediated hydrolysis limits the efficacy of anti-HCMV drug ganciclovir

    No full text
    Ganciclovir (GCV) is the first-line therapy against human cytomegalovirus (HCMV), a widespread infection that is particularly dangerous for immunodeficient individuals. Closely resembling deoxyguanosine triphosphate, the tri-phosphorylated metabolite of GCV (GCV-TP) is preferentially incorporated by the viral DNA polymerase, thereby terminating chain extension and, eventually, viral replication. However, the treatment outcome of GCV varies greatly among individuals, therefore warranting better understanding of its metabolism. Here we show that NUDT15, a Nudix hydrolase known to metabolize thiopurine triphosphates, can similarly hydrolyze GCV-TP through biochemical studies and co-crystallization of the NUDT15/GCV-TP complex. More critically, GCV efficacy was potentiated in HCMV-infected cells following NUDT15 depletion by RNAi or inhibition by an in-house-developed, nanomolar NUDT15 inhibitor, TH8321, suggesting that pharmacological targeting of NUDT15 is a possible avenue to improve existing anti-HCMV regimens. Collectively, the data further implicate NUDT15 as a broad-spectrum metabolic regulator of nucleoside analog therapeutics, such as thiopurines and GCV

    Human NUDT22 is a UDP-glucose/galactose hydrolase exhibiting a unique structural fold

    No full text
    Human NUDT22 belongs to the diverse NUDIX family of proteins, but has, until now, remained uncharacterized. Here we show that human NUDT22 is a Mg2+-dependent UDP-glucose and UDP-galactose hydrolase, producing UMP and glucose 1-phosphate or galactose 1-phosphate. We present the structure of human NUDT22 alone and in a complex with the substrate UDP-glucose. These structures reveal a partially conserved NUDIX fold domain preceded by a unique N-terminal domain responsible for UDP moiety binding and recognition. The NUDIX domain of NUDT22 contains a modified NUDIX box identified using structural analysis and confirmed through functional analysis of mutants. Human NUDT22's distinct structure and function as a UDP-carbohydrate hydrolase establish a unique NUDIX protein subfamily
    corecore