61 research outputs found

    Shedding light on plant litter decomposition: Advances, implications and new directions in understanding the role of photodegradation

    Get PDF
    Litter decomposition contributes to one of the largest fluxes of carbon (C) in the terrestrial biosphere and is a primary control on nutrient cycling. The inability of models using climate and litter chemistry to predict decomposition in dry environments has stimulated investigation of non-traditional drivers of decomposition, including photodegradation, the abiotic decomposition of organic matter via exposure to solar radiation. Recent work in this developing field shows that photodegradation may substantially influence terrestrial C fluxes, including abiotic production of carbon dioxide, carbon monoxide and methane, especially in arid and semi-arid regions. Research has also produced contradictory results regarding controls on photodegradation. Here we summarize the state of knowledge about the role of photodegradation in litter decomposition and C cycling and investigate drivers of photodegradation across experiments using a meta-analysis. Overall, increasing litter exposure to solar radiation increased mass loss by 23% with large variation in photodegradation rates among and within ecosystems. This variation was tied to both litter and environmental characteristics. Photodegradation increased with litter C to nitrogen (N) ratio, but not with lignin content, suggesting that we do not yet fully understand the underlying mechanisms. Photodegradation also increased with factors that increased solar radiation exposure (latitude and litter area to mass ratio) and decreased with mean annual precipitation. The impact of photodegradation on C (and potentially N) cycling fundamentally reshapes our thinking of decomposition as a solely biological process and requires that we define the mechanisms driving photodegradation before we can accurately represent photodegradation in global C and N models. © 2012 US Government

    Explaining Andean Potato Weevils in Relation to Local and Landscape Features: A Facilitated Ecoinformatics Approach

    Get PDF
    BACKGROUND: Pest impact on an agricultural field is jointly influenced by local and landscape features. Rarely, however, are these features studied together. The present study applies a "facilitated ecoinformatics" approach to jointly screen many local and landscape features of suspected importance to Andean potato weevils (Premnotrypes spp.), the most serious pests of potatoes in the high Andes. METHODOLOGY/PRINCIPAL FINDINGS: We generated a comprehensive list of predictors of weevil damage, including both local and landscape features deemed important by farmers and researchers. To test their importance, we assembled an observational dataset measuring these features across 138 randomly-selected potato fields in Huancavelica, Peru. Data for local features were generated primarily by participating farmers who were trained to maintain records of their management operations. An information theoretic approach to modeling the data resulted in 131,071 models, the best of which explained 40.2-46.4% of the observed variance in infestations. The best model considering both local and landscape features strongly outperformed the best models considering them in isolation. Multi-model inferences confirmed many, but not all of the expected patterns, and suggested gaps in local knowledge for Andean potato weevils. The most important predictors were the field's perimeter-to-area ratio, the number of nearby potato storage units, the amount of potatoes planted in close proximity to the field, and the number of insecticide treatments made early in the season. CONCLUSIONS/SIGNIFICANCE: Results underscored the need to refine the timing of insecticide applications and to explore adjustments in potato hilling as potential control tactics for Andean weevils. We believe our study illustrates the potential of ecoinformatics research to help streamline IPM learning in agricultural learning collaboratives

    Plant defences mediate interactions between herbivory and the direct foliar uptake of atmospheric reactive nitrogen

    Get PDF
    Reactive nitrogen from human sources (e.g., nitrogen dioxide, NO2) is taken up by plant roots following deposition to soils, but can also be assimilated by leaves directly from the atmosphere. Leaf uptake should alter plant metabolism and overall nitrogen balance and indirectly influence plant consumers; however, these consequences remain poorly understood. Here we show that direct foliar assimilation of NO2 increases levels of nitrogen-based defensive metabolites in leaves and reduces herbivore consumption and growth. These results suggest that atmospheric reactive nitrogen could have cascading negative effects on communities of herbivorous insects. We further show that herbivory induces a decrease in foliar uptake, indicating that consumers could limit the ability of vegetation to act as a sink for nitrogen pollutants (e.g., smog from mobile emissions). Our study suggests that the interactions of foliar uptake, plant defence and herbivory could have significant implications for understanding the environmental consequences of reactive nitrogen

    Successional Change in Phosphorus Stoichiometry Explains the Inverse Relationship between Herbivory and Lupin Density on Mount St. Helens

    Get PDF
    The average nitrogen-to-phosphorus ratio (N?P) of insect herbivores is less than that of leaves, suggesting that P may mediate plant-insect interactions more often than appreciated. We investigated whether succession-related heterogeneity in N and P stoichiometry influences herbivore performance on N-fixing lupin (Lupinus lepidus) colonizing primary successional volcanic surfaces, where the abundances of several specialist lepidopteran herbivores are inversely related to lupin density and are known to alter lupin colonization dynamics. We examined larval performance in response to leaf nutritional characteristics using gelechiid and pyralid leaf-tiers, and a noctuid leaf-cutter.Apple JL, Wink M, Wills SE, Bishop JG (2009) Successional Change in Phosphorus Stoichiometry Explains the Inverse Relationship between Herbivory and Lupin Density on Mount St. Helens. PLoS ONE 4(11): e7807. doi:10.1371/journal.pone.000780

    Effects of UV photodegradation on subsequent microbial decomposition of Bromus diandrus litter

    Full text link
    Aims: Photodegradation acts as a direct contributor to litter decomposition in arid and semi-arid ecosystems. However, its indirect effects are unclear. Does photodegradation condition litter for subsequent microbial decomposition? Methods: We conditioned litter of Bromus diandrus with ambient or reduced ultraviolet (UV) radiation and three periods of exposure (summer, summer-winter, and 1 year) in a California annual grassland. We then investigated how field UV exposure affected subsequent microbial decomposition of litter using a controlled laboratory incubation. Results: Surprisingly, microbial decomposition was decreased by UV radiation when the exposure occurred during summer but was unaffected by UV treatment for exposure longer than summer. Litter lignin concentrations did not explain these results, as they were not affected by UV radiation for any of the exposure periods. However, for the summer period exposure, UV radiation was associated with decreased litter N concentration, which corresponded with lowered subsequent microbial activity. Conclusions: Our results suggest a new mechanism through which photodegradation interacts with litter microbial decomposition: photodegradation may decrease microbial decomposition through inhibition of microbial N immobilization. Our results imply that solar radiation can interact with litter N cycling dynamics to influence litter decomposition processes
    • …
    corecore