1,020 research outputs found
First comparison of wave observations from CoMP and AIA/SDO
Waves have long been thought to contribute to the heating of the solar corona
and the generation of the solar wind. Recent observations have demonstrated
evidence of quasi-periodic longitudinal disturbances and ubiquitous transverse
wave propagation in many different coronal environments. This paper
investigates signatures of different types of oscillatory behaviour, both above
the solar limb and on-disk, by comparing findings from the Coronal
Multi-channel Polarimeter (CoMP) and the Atmospheric Imaging Assembly (AIA) on
board the Solar Dynamics Observatory (SDO) for the same active region. We study
both transverse and longitudinal motion by comparing and contrasting
time-distance images of parallel and perpendicular cuts along/across active
region fan loops. Comparisons between parallel space-time features in CoMP
Doppler velocity and transverse oscillations in AIA images are made, together
with space-time analysis of propagating quasi-periodic intensity features seen
near the base of loops in AIA. Signatures of transverse motions are observed
along the same magnetic structure using CoMP Doppler velocity
(Vphase=600-750km/s, P=3-6mins) and in AIA/SDO above the limb (P=3-8mins).
Quasi-periodic intensity features (Vphase=100-200km/s, P=6-11mins) also travel
along the base of the same structure. On the disk, signatures of both
transverse and longitudinal intensity features were observed by AIA; both show
similar properties to signatures found along structures anchored in the same
active region three days earlier above the limb. Correlated features are
recovered by space-time analysis of neighbouring tracks over perpendicular
distances of <2.6Mm.Comment: 14 pages, 14 figures, 1 tabl
Self-consistent nanoflare heating in model active regions:MHD avalanches
Straightened cylindrical models of coronal loops have been standard for decades, and shown to support nanoflare-like heating, but the influence of geometric curvature in models upon the heating produced has not been discussed in depth. Heating, its spatiotemporal distributions, and the associated mechanisms responsible are discussed, and compared with those from straightened models of a coronal loop. Previously, magnetohydrodynamic avalanches have been generalized to curved loops, and shown to be viable. From that study, the associated heating is analysed and discussed in depth. Heating is seen to arise from processes originally instigated, yet not dominated, by magnetic reconnection, producing bursty, aperiodic nanoflares, dispersed evenly throughout the corona, but with a modest bias away from footpoints. One novelty arising is the simultaneous yet independent occurrence of nanoflare-like events at disjoint sites along individual strands, anticipating some features recently seen in âcampfiresâ by Solar Orbiter. With a view to future refinements in the model and to the inclusion of additional physical effects, the implications of this analysis are discussed
Can multi-threaded flux tubes in coronal arcades support a magnetohydrodynamic avalanche?
Magnetohydrodynamic (MHD) instabilities allow energy to be released from stressed magnetic fields, commonly modelled in cylindrical flux tubes linking parallel planes, but, more recently, also in curved arcades containing flux tubes with both footpoints in the same photospheric plane. Uncurved cylindrical flux tubes containing multiple individual threads have been shown to be capable of sustaining an MHD avalanche, whereby a single unstable thread can destabilise many. We examine the properties of multi-threaded coronal loops, wherein each thread is created by photospheric driving in a realistic, curved coronal arcade structure (with both footpoints of each thread in the same plane). We use three-dimensional MHD simulations to study the evolution of singleand multi-threaded coronal loops, which become unstable and reconnect, while varying the driving velocity of individual threads. Experiments containing a single thread destabilise in a manner indicative of an ideal MHD instability and consistent with previous examples in the literature. The introduction of additional threads modifies this picture, with aspects of the model geometry and relative driving speeds of individual threads affecting the ability of any thread to destabilise others. In both single- and multi-threaded cases, continuous driving of the remnants of disrupted threads produces secondary, aperiodic bursts of energetic release
Decreased susceptibility to ciprofloxacin in Salmonella enterica serotype typhi, United Kingdom.
In 1999, 23% of Salmonella enterica serotype Typhi isolates from patients in the United Kingdom exhibited decreased susceptibility to ciprofloxacin (MIC 0.25-1.0 mg/L); more than half were also resistant to chloramphenicol, ampicillin, and trimethoprim. Increasing numbers of treatment failures have been noted. Most infections have been in patients with a recent history of travel to India and Pakistan
Nonlinear wave propagation and reconnection at magnetic X-points in the Hall MHD regime
The highly dynamical, complex nature of the solar atmosphere naturally
implies the presence of waves in a topologically varied magnetic environment.
Here, the interaction of waves with topological features such as null points is
inevitable and potentially important for energetics. The low resistivity of the
solar coronal plasma implies that non-MHD effects should be considered in
studies of magnetic energy release in this environment. This paper investigates
the role of the Hall term in the propagation and dissipation of waves, their
interaction with 2D magnetic X-points and the nature of the resulting
reconnection. A Lagrangian remap shock-capturing code (Lare2d) is used to study
the evolution of an initial fast magnetoacoustic wave annulus for a range of
values of the ion skin depth in resistive Hall MHD. A magnetic null-point
finding algorithm is also used to locate and track the evolution of the
multiple null-points that are formed in the system. Depending on the ratio of
ion skin depth to system size, our model demonstrates that Hall effects can
play a key role in the wave-null interaction. In particular, the initial
fast-wave pulse now consists of whistler and ion-cyclotron components; the
dispersive nature of the whistler wave leads to (i) earlier interaction with
the null, (ii) the creation of multiple additional, transient nulls and, hence,
an increased number of energy release sites. In the Hall regime, the relevant
timescales (such as the onset of reconnection and the period of the oscillatory
relaxation) of the system are reduced significantly, and the reconnection rate
is enhanced.Comment: 13 pages, 10 figure
Fluorescent amplified fragment length polymorphism genotyping of Salmonella Enteritidis: a method suitable for rapid outbreak recognition
ObjectiveTo perform fluorescent amplified fragment length polymorphism (FAFLP) analysis on phage type (PT) reference strains of Salmonella enterica subsp. enterica serotype Enteritidis (S. Enteritidis), and S. Enteritidis PT 6 and 6a recent clinical isolates to determine its usefulness for primary characterization of clinical S. Enteritidis isolates, and then to determine whether FAFLP is suitable for rapid characterization of strains in an outbreak situation.MethodsTwenty-five PT reference strains of S. Enteritidis and 20 S. Enteritidis PT 6 and 6a clinical isolates were subjected to FAFLP analysis using the selective primer combinations Eco + 0âMse + T and Eco + 0âMse + TA.ResultsFAFLP successfully separated each one of the 25 S. Enteritidis PT strains into distinct profiles, while macrorestriction and PFGE using XbaI identified 20 pulsed-field profiles. FAFLP also resolved cases and outbreaks due to S. Enteritidis PTs 6 and 6a.ConclusionsThe resolving power of FAFLP was higher than that of PFGE. FAFLP is a highly discriminatory genotyping method and, in conjunction with phage typing for primary subdivision of S. Enteritidis, provides a rapid and powerful tool for strain differentiation, both for outbreak investigation and for epidemiologic surveillance
The fractional integrated bi- parameter smooth transition autoregressive model
This paper introduces the fractionally integrated Bi-parameter smooth transition autoregressive model (FI-BSTAR model) as an extension of BSTAR model proposed by Siliverstovs (2005) and the fractionally integrated STAR model (FI-STAR model) proposed by van Dijk et al. (2002). Our FI-BSTAR model is able to simultaneously describe persistence and asymmetric smooth structural change in time series. An empirical application using monthly growth rates of the American producer price index is provided.Long Memory, Nonlinearity, Asymmetry, STAR models.
Flare particle acceleration in the interaction of twisted coronal flux ropes
The authors gratefully acknowledge the support of the U.K. Science and Technology Facilities Council. JT and AWH acknowledge the financial support of STFC through the Consolidated grant, ST/N000609/1, to the University of St Andrews. PKB acknowledges STFC support through ST/P000428/1 at the University of Manchester.Aims. The aim of this work is to investigate and characterise non-thermal particle behaviour in a three-dimensional (3D) magnetohydrodynamical (MHD) model of unstable multi-threaded flaring coronal loops. Methods. We have used a numerical scheme which solves the relativistic guiding centre approximation to study the motion of electrons and protons. The scheme uses snapshots from high resolution numerical MHD simulations of coronal loops containing two threads, where a single thread becomes unstable and (in one case) destabilises and merges with an additional thread. Results. The particle responses to the reconnection and fragmentation in MHD simulations of two loop threads are examined in detail. We illustrate the role played by uniform background resistivity and distinguish this from the role of anomalous resistivity using orbits in an MHD simulation where only one thread becomes unstable without destabilising further loop threads. We examine the (scalable) orbit energy gains and final positions recovered at different stages of a second MHD simulation wherein a secondary loop thread is destabilised by (and merges with) the first thread. We compare these results with other theoretical particle acceleration models in the context of observed energetic particle populations during solar flares.PostprintPeer reviewe
- âŠ