208 research outputs found

    Investigation of pianistic problems as perceived and solved by selected piano pedagogues

    Get PDF

    Acoustic competition in the gulf toadfish Opsanus beta: Acoustic tagging

    Get PDF
    Nesting male gulf toadfish Opsanus beta produce a boatwhistle advertisement call used in male–male competition and to attract females and an agonistic grunt call. The grunt is a short-duration pulsatile call, and the boatwhistle is a complex call typically consisting of zero to three introductory grunts, a long tonal boop note, and zero to three shorter boops. The beginning of the boop note is also gruntlike. Anomalous boatwhistles contain a short-duration grunt embedded in the tonal portion of the boop or between an introductory grunt and the boop. Embedded grunts have sound-pressure levels and frequency spectra that correspond with those of recognized neighbors, suggesting that one fish is grunting during another’s call, a phenomenon here termed acoustic tagging. Snaps of nearby pistol shrimp may also be tagged, and chains of tags involving more than two fish occur. The stimulus to tag is a relatively intense sound with a rapid rise time, and tags are generally produced within 100 ms of a trigger stimulus. Time between the trigger and the tag decreases with increased trigger amplitude. Tagging is distinct from increased calling in response to natural calls or stimulatory playbacks since calls rarely overlap other calls or playbacks. Tagging is not generally reciprocal between fish, suggesting parallels to dominance displays

    Site Environmental Report for 2011, Volumes 1& 2

    Full text link
    The Site Environmental Report for 2011 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year (CY) 2011. Throughout this report, “Berkeley Lab” or “LBNL” refers both to (1) the multiprogram scientific facility the UC manages and operates on the 202-acre university-owned site located in the hills above the UC Berkeley campus, and the site itself, and (2) the UC as managing and operating contractor for Ernest Orlando Lawrence Berkeley National Laboratory. The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters that include an overview of LBNL, a discussion of its Environmental Management System (EMS), the status of environmental programs, summarized results from surveillance and monitoring activities, and quality assurance (QA) measures. Volume II contains individual data results from surveillance and monitoring activities

    Structural Dynamics of a Methionine γ-lyase for Calicheamicin Biosynthesis: Rotation of the Conserved Tyrosine Stacking with Pyridoxal Phosphate

    Get PDF
    CalE6 from Micromonospora echinospora is a (pyridoxal 5′ phosphate) PLP-dependent methionine γ-lyase involved in the biosynthesis of calicheamicins. We report the crystal structure of a CalE6 2-(N-morpholino)ethanesulfonic acidcomplex showing ligand-induced rotation of Tyr100, which stacks with PLP, resembling the corresponding tyrosine rotation of true catalytic intermediates of CalE6 homologs. Elastic network modeling and crystallographic ensemble refinement reveal mobility of the N-terminal loop, which involves both tetrameric assembly and PLP binding. Modeling and comparative structuralanalysis of PLP-dependent enzymes involved in Cys/Met metabolism shine light on the functional implications of the intrinsic dynamic properties of CalE6 in catalysis and holoenzyme maturation

    14-3-3 Proteins Interact with a Hybrid Prenyl-Phosphorylation Motif to Inhibit G Proteins

    Get PDF
    Signaling through G proteins normally involves conformational switching between GTP- and GDP-bound states. Several Rho GTPases are also regulated by RhoGDI binding and sequestering in the cytosol. Rnd proteins are atypical constitutively GTP-bound Rho proteins, whose regulation remains elusive. Here, we report a high-affinity 14-3-3-binding site at the C terminus of Rnd3 consisting of both the Cys241-farnesyl moiety and a Rho-associated coiled coil containing protein kinase (ROCK)-dependent Ser240 phosphorylation site. 14-3-3 binding to Rnd3 also involves phosphorylation of Ser218 by ROCK and/or Ser210 by protein kinase C (PKC). The crystal structure of a phosphorylated, farnesylated Rnd3 peptide with 14-3-3 reveals a hydrophobic groove in 14-3-3 proteins accommodating the farnesyl moiety. Functionally, 14-3-3 inhibits Rnd3-induced cell rounding by translocating it from the plasma membrane to the cytosol. Rnd1, Rnd2, and geranylgeranylated Rap1A interact similarly with 14-3-3. In contrast to the canonical GTP/GDP switch that regulates most Ras superfamily members, our results reveal an unprecedented mechanism for G protein inhibition by 14-3-3 proteins

    Site Environmental Report for 2012, Volumes 1& 2

    Full text link
    This report provides a comprehensive summary of the environmental program activities at LBNL for the calendar year 2012. Volume I is organized into an executive summary followed by six chapters that include an overview of LBNL, a discussion of its Environmental Management System (EMS), the status of environmental programs, summarized results from surveillance and monitoring activities, and quality assurance (QA) measures. Volume II contains individual data results from surveillance and monitoring activities

    Hyperacute Directional Hearing and Phonotactic Steering in the Cricket (Gryllus bimaculatus deGeer)

    Get PDF
    Background: Auditory mate or prey localisation is central to the lifestyle of many animals and requires precise directional hearing. However, when the incident angle of sound approaches 0u azimuth, interaural time and intensity differences gradually vanish. This poses a demanding challenge to animals especially when interaural distances are small. To cope with these limitations imposed by the laws of acoustics, crickets employ a frequency tuned peripheral hearing system. Although this enhances auditory directionality the actual precision of directional hearing and phonotactic steering has never been studied in the behaviourally important frontal range. Principal Findings: Here we analysed the directionality of phonotaxis in female crickets (Gryllus bimaculatus) walking on an open-loop trackball system by measuring their steering accuracy towards male calling song presented at frontal angles of incidence. Within the range of 630u, females reliably discriminated the side of acoustic stimulation, even when the sound source deviated by only 1u from the animal’s length axis. Moreover, for angles of sound incidence between 1u and 6u the females precisely walked towards the sound source. Measuring the tympanic membrane oscillations of the front leg ears with a laser vibrometer revealed between 0u and 30u a linear increasing function of interaural amplitude differences with a slope of 0.4 dB/u. Auditory nerve recordings closely reflected these bilateral differences in afferent response latency and intensity that provide the physiological basis for precise auditory steering
    corecore