12 research outputs found

    Cockayne syndrome group B protein has novel strand annealing and exchange activities

    Get PDF
    Cockayne syndrome (CS) is a rare inherited human genetic disorder characterized by UV sensitivity, severe neurological abnormalities and prageroid symptoms. The CS complementation group B (CSB) protein is involved in UV-induced transcription coupled repair (TCR), base excision repair and general transcription. CSB also has a DNA-dependent ATPase activity that may play a role in remodeling chromatin in vivo. This study reports the novel finding that CSB catalyzes the annealing of complementary single-stranded DNA (ssDNA) molecules with high efficiency, and has strand exchange activity. The rate of CSB-catalyzed annealing of complementary ssDNA is 25-fold faster than the rate of spontaneous ssDNA annealing under identical in vitro conditions and the reaction occurs with a high specificity in the presence of excess non-homologous ssDNA. The specificity and intrinsic nature of the reaction is also confirmed by the observation that it is stimulated by dephosphorylation of CSB, which occurs after UV-induced DNA damage, and is inhibited in the presence of ATPγS. Potential roles of CSB in cooperation with strand annealing and exchange activities for TCR and homologous recombination are discussed

    The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA

    Get PDF
    Individuals with BRCA2 mutations are predisposed to breast cancers owing to genome instability. To determine the functions of BRCA 2, the human protein was purified. It was found to bind selectively to single-stranded DNA (ssDNA), and to ssDNA in tailed duplexes and replication fork structures. Monomeric and dimeric forms of BRCA 2 were observed by EM. BRCA 2 directed the binding of RA D51 recombinase to ssDNA, reduced the binding of RA D51 to duplex DNA and stimulated RA D51-mediated DNA strand exchange. These observations provide a molecular basis for the role of BRCA 2 in the maintenance of genome stability

    The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA

    No full text
    Individuals with BRCA2 mutations are predisposed to breast cancers owing to genome instability. To determine the functions of BRCA2, the human protein was purified. It was found to bind selectively to single-stranded DNA (ssDNA), and to ssDNA in tailed duplexes and replication fork structures. Monomeric and dimeric forms of BRCA2 were observed by EM. BRCA2 directed the binding of RAD51 recombinase to ssDNA, reduced the binding of RAD51 to duplex DNA and stimulated RAD51-mediated DNA strand exchange. These observations provide a molecular basis for the role of BRCA2 in the maintenance of genome stability

    Interactions between human BRCA2 protein and the meiosis-specific recombinase DMC1

    Get PDF
    Germline mutations in BRCA2 predispose to hereditary breast cancers. BRCA2 protein regulates recombinational repair by interaction with RAD51 via a series of degenerate BRC repeat motifs encoded by exon 11 (BRCA2996–2113), and an unrelated C-terminal domain (BRCA23265–3330). BRCA2 is also required for meiotic recombination. Here, we show that human BRCA2 binds the meiosis-specific recombinase DMC1 and define the primary DMC1 interaction site to a 26 amino-acid region (BRCA22386–2411). This region is highly conserved in BRCA2 proteins from a variety of mammalian species, but is absent in BRCA2 from Arabidopsis thaliana, Caenorhabditis elegans, and other eukaryotes. We demonstrate the critical importance of Phe2406, Pro2408, and Pro2409 at the conserved motif 2404KVFVPPFK2411. This interaction domain, defined as the PhePP motif, promotes specific interactions between BRCA2 and DMC1, but not with RAD51. Thus, the RAD51 and DMC1 interaction domains on BRCA2 are distinct from each other, allowing coordinated interactions of the two recombinases with BRCA2 at meiosis. These results lead us to suggest that BRCA2 is a universal regulator of RAD51/DMC1 recombinase actions
    corecore