27 research outputs found

    Do all millisecond pulsars share a common heritage?

    Full text link
    The discovery of millisecond pulsations from neutron stars in low mass X-ray binary (LMXB) systems has substantiated the theoretical prediction that links millisecond radio pulsars (MSRPs) and LMXBs. Since then, the process that produces millisecond radio pulsars from LMXBs, followed by spin-down due to dipole radiation has been conceived as the 'standard evolution' of millisecond pulsars. However, the question whether all the observed millisecond radio pulsars could be produced by LMXBs has not been quantitatively addressed until now. The standard evolutionary process produces millisecond pulsars with periods (P) and spin-down rates (Pdot) that are not entirely independent. The possible P-Pdot values that millisecond radio pulsars can attain are jointly constrained. In order to test whether the observed millisecond radio pulsars are the unequivocal descendants of millisecond X-ray pulsars (MSXP), we have produced a probability map that represents the expected distribution of millisecond radio pulsars for the standard model. We show with more than 95 % confidence that the fastest spinning millisecond radio pulsars with high magnetic fields, e.g. PSR B1937+21, cannot be produced by the observed millisecond X-ray pulsars within the framework of the standard model.Comment: Full resolution color figures available at: http://www.kiziltan.org/research.html. To appear in the American Institute of Physics (AIP) proceedings, 8 pages, 2 figures, 1 tabl

    The Neutron Star Mass Distribution

    Full text link
    In recent years, the number of pulsars with secure mass measurements has increased to a level that allows us to probe the underlying neutron star (NS) mass distribution in detail. We critically review the radio pulsar mass measurements. For the first time, we are able to analyze a sizable population of NSs with a flexible modeling approach that can effectively accommodate a skewed underlying distribution and asymmetric measurement errors. We find that NSs that have evolved through different evolutionary paths reflect distinctive signatures through dissimilar distribution peak and mass cutoff values. NSs in double neutron star and neutron star-white dwarf systems show consistent respective peaks at 1.33 Msun and 1.55 Msun suggesting significant mass accretion (delta m~0.22 Msun) has occurred during the spin-up phase. The width of the mass distribution implied by double NS systems is indicative of a tight initial mass function while the inferred mass range is significantly wider for NSs that have gone through recycling. We find a mass cutoff at ~2.1 Msun for NSs with white dwarf companions which establishes a firm lower bound for the maximum NS mass. This rules out the majority of strange quark and soft equation of state models as viable configurations for NS matter. The lack of truncation close to the maximum mass cutoff along with the skewed nature of the inferred mass distribution both enforce the suggestion that the 2.1 Msun limit is set by evolutionary constraints rather than nuclear physics or general relativity, and the existence of rare super-massive NSs is possible.Comment: 13 pages, 4 figures, 2 tables. ApJ in press. A completely new and more flexible statistical model applied. Astrophysical results remained same as arXiv:1011.429

    A Young White Dwarf Companion to Pulsar 1620-26: Evidence for Early Planet Formation

    Full text link
    The pulsar B1620-26 has two companions, one of stellar mass and one of planetary mass. We detected the stellar companion using Hubble Space Telescope observations. The color and magnitude of the stellar companion indicate that it is an undermassive white dwarf (0.34±0.04M0.34 \pm 0.04 M_{\odot}) of age 480±140480\pm 140 Myr. This places a constraint on the recent history of this triple system and supports a scenario in which the current configuration arose through a dynamical exchange interaction in the cluster core. This implies that planets may be relatively common in low-metallicity globular clusters and that planet formation is more widespread and happened earlier than previously believed.Comment: 4 pages, published in Scienc

    Millisecond Pulsar Ages: Implications of Binary Evolution and a Maximum Spin Limit

    Full text link
    In the absence of constraints from the binary companion or supernova remnant, the standard method for estimating pulsar ages is to infer an age from the rate of spin-down. While the generic spin-down age may give realistic estimates for normal pulsars, it can fail for pulsars with very short periods. Details of the spin-up process during the low mass X-ray binary phase pose additional constraints on the period (P) and spin-down rates (Pdot) that may consequently affect the age estimate. Here, we propose a new recipe to estimate millisecond pulsar (MSP) ages that parametrically incorporates constraints arising from binary evolution and limiting physics. We show that the standard method can be improved by this approach to achieve age estimates closer to the true age whilst the standard spin-down age may over- or under-estimate the age of the pulsar by more than a factor of ~10 in the millisecond regime. We use this approach to analyze the population on a broader scale. For instance, in order to understand the dominant energy loss mechanism after the onset of radio emission, we test for a range of plausible braking indices. We find that a braking index of n=3 is consistent with the observed MSP population. We demonstrate the existence and quantify the potential contributions of two main sources of age corruption: the previously known "age bias" due to secular acceleration and "age contamination" driven by sub-Eddington progenitor accretion rates. We explicitly show that descendants of LMXBs that have accreted at very low rates will exhibit ages that appear older than the age of the Galaxy. We further elaborate on this technique, the implications and potential solutions it offers regarding MSP evolution, the underlying age distribution and the post-accretion energy loss mechanism.Comment: Replaced with version published by ApJ. Tables reformatted and minor changes to the text. Full resolution color figures and movies available at http://www.kiziltan.org/research.html#age

    Constraints on Pulsar Evolution: The Joint Period-Spindown Distribution of Millisecond Pulsars

    Full text link
    We calculate the joint period-spindown (P-Pdot) distributions of millisecond radio pulsars (MSRP) for the standard evolutionary model in order to test whether the observed MSRPs are the unequivocal descendants of millisecond X-ray pulsars (MSXP). The P-Pdot densities implied by the standard evolutionary model compared with observations suggest that there is a statistically significant overabundance of young/high magnetic field MSRPs. Taking biases due to observational selection effects into account, it is unlikely that MSRPs have evolved from a single coherent progenitor population that loses energy via magnetic dipole radiation after the onset of radio emission. By producing the P-Pdot probability map, we show with more than 95% confidence that the fastest spinning millisecond pulsars with high magnetic fields, e.g. PSR B1937+21, cannot be produced by the observed MSXPs within the framework of the standard model.Comment: 11 pages, 2 figures, accepted by ApJ

    The Fading Optical Counterpart of GRB~970228, Six Months and One Year Later

    Get PDF
    We report on observations of the fading optical counterpart of the gamma-ray burst GRB 970228, made with the Hubble Space Telescope STIS CCD approximately six months after outburst and with the HST/NICMOS and Keck/NIRC approximately one year after outburst. The unresolved counterpart is detected by STIS at V=28.0 +/- 0.25, consistent with a continued power-law decline with exponent -1.14 +/- 0.05. The counterpart is located within, but near the edge of, a faint extended source with diameter ~0."8 and integrated magnitude V=25.8 +/- 0.25. A reanalysis of HST and NTT observations performed shortly after the burst shows no evidence of proper motion of the point source or fading of the extended emission. Only the extended source is visible in the NICMOS images with a magnitude of H=23.3 +/- 0.1. The Keck observations find K = 22.8 +/- 0.3. Several distinct and independent means of deriving the foreground extinction in the direction of GRB 970228 all agree with A_V = 0.75 +/- 0.2. After adjusting for Galactic extinction, we find that the size of the observed extended emission is consistent with that of galaxies of comparable magnitude found in the Hubble Deep Field (HDF) and other deep HST images. Only 2% of the sky is covered by galaxies of similar or greater surface brightness; therefore the extended source is almost certainly the host galaxy. Additionally, we find that the extinction-corrected V - H and V - K colors of the host are as blue as any galaxy of comparable or brighter magnitude in the HDF. Taken in concert with recent observations of GRB 970508, GRB 971214, and GRB 980703 our work suggests that all four GRBs with spectroscopic identification or deep multicolor broad-band imaging of the host lie in rapidly star-forming galaxies.Comment: 24 pages, Latex, 4 PostScript figures, to appear in the May 10 issue of The Astrophysical Journal (Note: displayed abstract is abridged

    GRB 020410: A Gamma-Ray Burst Afterglow Discovered by its Supernova Light

    Full text link
    We present the discovery and monitoring of the optical transient (OT) associated with GRB 020410. The fading OT was found by Hubble Space Telescope (HST) observations taken 28 and 65 days after burst at a position consistent with the X-ray afterglow. Subsequent re-examination of early ground based observations revealed that a faint OT was present 6 hours after burst, confirming the source association with GRB 020410. A deep non-detection after one week requires that the OT re-brightened between day 7 and day 28, and further late time HST data taken approximately 100 days after burst imply that it is very red.We compare both the flux and color of the excess with supernova models and show that the data are best explained by the presence of a Type Ib/c supernova at a redshift z ~ 0.5, which occured roughly coincident with the day of GRB.Comment: 23 Pages, 9 figures, submitted to Ap

    Gravitational Radiation from the Coalescence of Binary Neutron Stars: Effects Due to the Equation of State, Spin, and Mass Ratio

    Full text link
    We calculate the gravitational radiation produced by the coalescence of inspiraling binary neutron stars in the Newtonian regime using 3-dimensional numerical simulations. The stars are modeled as polytropes and start out in the point-mass regime at wide separation. The hydrodynamic integration is performed using smooth particle hydrodynamics (SPH) with Newtonian gravity, and the gravitational radiation is calculated using the quadrupole approximation. We have run a number of simulations varying the neutron star radii, equations of state, spins, and mass ratio. The resulting gravitational waveforms and spectra are rich in information about the hydrodynamics of coalescence, and show characteristic dependence on GM/Rc^2, the equation of state, and the mass ratio.Comment: 39 pages, uses Latex 2.09. To be published in the Dec. 15, 1996 issue of Physical Review D. 16 Figures (bitmapped). Originals available in compressed Postscript format at ftp://zonker.drexel.edu/papers/PAPER2

    Hubble Space Telescope STIS Observations of GRB 000301C: CCD Imaging and Near-Ultraviolet MAMA Spectroscopy

    Get PDF
    We present Space Telescope Imaging Spectrograph observations of the optical transient (OT) counterpart of the γ-ray burster GRB 000301C obtained 5 days after the burst, on 2000 March 6. CCD clear-aperture imaging reveals a R ≃ 21.50 ± 0.15 source with no apparent host galaxy. An 8000 s, 1150 Å 18 on the line of sight to the OT. This measured redshift is conservatively a lower limit to the GRB redshift. However, as all other GRBs that have deep Hubble Space Telescope images appear to lie on the stellar field of a host galaxy, and as the large H I column density measured here and in later ground-based observations is unlikely on a random line of sight, we believe we are probably seeing absorption from H I in the host galaxy. In any case, this represents the largest direct redshift determination of a γ-ray burster to date. Our data are compatible with an OT spectrum represented by a power law with an intrinsic index α = 1.2 (f_ν ∝ ν^(-α)) and no extinction in the host galaxy, or with α = 0.5 and extinction by SMC-like dust in the OT rest frame with A_V = 0.15. The large N_(H I) and the lack of a detected host are similar to the situation for damped Lyα absorbers at z > 2
    corecore