11,390 research outputs found
Surface flow profiles for dry and wet granular materials by Particle Tracking Velocimetry; the effect of wall roughness
Two-dimensional Particle Tracking Velocimetry (PTV) is a promising technique
to study the behaviour of granular flows. The aim is to experimentally
determine the free surface width and position of the shear band from the
velocity profile to validate simulations in a split-bottom shear cell geometry.
The position and velocities of scattered tracer particles are tracked as they
move with the bulk flow by analyzing images. We then use a new technique to
extract the continuum velocity field, applying coarse-graining with the
postprocessing toolbox MercuryCG on the discrete experimental PTV data. For
intermediate filling heights, the dependence of the shear (or angular) velocity
on the radial coordinate at the free surface is well fitted by an error
function. From the error function, we get the width and the centre position of
the shear band. We investigate the dependence of these shear band properties on
filling height and rotation frequencies of the shear cell for dry glass beads
for rough and smooth wall surfaces. For rough surfaces, the data agrees with
the existing experimental results and theoretical scaling predictions. For
smooth surfaces, particle-wall slippage is significant and the data deviates
from the predictions. We further study the effect of cohesion on the shear band
properties by using small amount of silicon oil and glycerol as interstitial
liquids with the glass beads. While silicon oil does not lead to big changes,
glycerol changes the shear band properties considerably. The shear band gets
wider and is situated further inward with increasing liquid saturation, due to
the correspondingly increasing trend of particles to stick together
Simulation Study of TenTen: A new Multi-TeV IACT array
TenTen is a proposed array of Imaging Atmospheric Cherenkov Telescopes (IACT)
optimized for the gamma ray energy regime of 10 TeV to 100 TeV, but with a
threshold of ~1 to a few TeV. It will offer a collecting area of 10 km2 above
energies of 10 TeV. In the initial phase, a cell of 3 to 5 modest-sized
telescopes, each with 10-30 m2 mirror area, is suggested for an Australian
site. A possible expansion of the array could comprise many such cells. Here we
present work on configuration and technical issues from our simulation studies
of the array. Working topics include array layout, telescope size and optics,
camera field of view, telescope trigger system, electronics, and site surveys.Comment: 4 pages, 7 figures, submitted to Proceedings of the ICRC 2007, pdf
forma
Time Domain Simulations of Arm Locking in LISA
Arm locking is a technique that has been proposed for reducing laser
frequency fluctuations in the Laser Interferometer Space Antenna (LISA), a
gravitational-wave observatory sensitive in the milliHertz frequency band. Arm
locking takes advantage of the geometric stability of the triangular
constellation of three spacecraft that comprise LISA to provide a frequency
reference with a stability in the LISA measurement band that exceeds that
available from a standard reference such as an optical cavity or molecular
absorption line. We have implemented a time-domain simulation of arm locking
including the expected limiting noise sources (shot noise, clock noise,
spacecraft jitter noise, and residual laser frequency noise). The effect of
imperfect a priori knowledge of the LISA heterodyne frequencies and the
associated 'pulling' of an arm locked laser is included. We find that our
implementation meets requirements both on the noise and dynamic range of the
laser frequency.Comment: Revised to address reviewer comments. Accepted by Phys. Rev.
TenTen: A New Array of Multi-TeV Imaging Cherenkov Telescopes
The exciting results from H.E.S.S. point to a new population of gamma-ray
sources at energies E > 10 TeV, paving the way for future studies and new
discoveries in the multi-TeV energy range. Connected with these energies is the
search for sources of PeV cosmic-rays (CRs) and the study of multi-TeV
gamma-ray production in a growing number of astrophysical environments. TenTen
is a proposed stereoscopic array (with a suggested site in Australia) of
modest-sized (10 to 30m^2) Cherenkov imaging telescopes with a wide field of
view (8 to 10deg diameter) optimised for the E~10 to 100 TeV range. TenTen will
achieve an effective area of ~10 km^2 at energies above 10 TeV. We outline here
the motivation for TenTen and summarise key performance parameters.Comment: 4 pages, 2 figures, proceedings of the 30th ICRC, Merida, Mexico,
200
- …