775 research outputs found

    Machine learned regression for abductive DNA sequencing

    No full text

    Uncovering Spiral Structure in Flocculent Galaxies

    Get PDF
    We present K'(2.1 micron) observations of four nearby flocculent spirals, which clearly show low-level spiral structure and suggest that kiloparsec-scale spiral structure is more prevalent in flocculent spirals than previously supposed. In particular, the prototypical flocculent spiral NGC 5055 is shown to have regular, two-arm spiral structure to a radius of 4 kpc in the near infrared, with an arm-interarm contrast of 1.3. The spiral structure in all four galaxies is weaker than that in grand design galaxies. Taken in unbarred galaxies with no large, nearby companions, these data are consistent with the modal theory of spiral density waves, which maintains that density waves are intrinsic to the disk. As an alternative, mechanisms for driving spiral structure with non-axisymmetric perturbers are also discussed. These observations highlight the importance of near infrared imaging for exploring the range of physical environments in which large-scale dynamical processes, such as density waves, are important.Comment: 12 pages AASTeX; 3 compressed PS figures can be retrieved from ftp://ftp.astro.umd.edu/pub/michele as file thornley.tar (1.6Mbytes). Accepted to Ap.J. Letters.(Figures now also available here, and from ftp://ftp.astro.umd.edu/pub/michele , in GIF format.

    Infrared dust emission in the outer disk of M51

    Get PDF
    We examine faint infrared emission features detected in Spitzer Space Telescope images of M51, which are associated with atomic hydrogen in the outer disk and tidal tail at R greater than R_25 (4.9', ~14 kpc at d=9.6 Mpc). The infrared colors of these features are consistent with the colors of dust associated with star formation in the bright disk. However, the star formation efficiency (as a ratio of star formation rate to neutral gas mass) implied in the outer disk is lower than that in the bright disk of M51 by an order of magnitude, assuming a similar relationship between infrared emission and star formation rate in the inner and outer disks.Comment: 13 pages in manuscript form, 2 figures; download PDF of manuscript with original-resolution Figure 1 at http://www.eg.bucknell.edu/physics/thornley/thornleym51.pd

    Gaps in the cloud cover? Comparing extinction measures in spiral disks

    Get PDF
    Dust in galaxies can be mapped by either the FIR/sub-mm emission, the optical or infrared reddening of starlight, or the extinction of a known background source. We compare two dust extinction measurements for a set of fifteen sections in thirteen nearby galaxies, to determine the scale of the dusty ISM responsible for disk opacity: one using stellar reddening and the other a known background source. In our earlier papers, we presented extinction measurements of 29 galaxies, based on calibrated counts of distant background objects identified though foreground disks in HST/WFPC2 images. For the 13 galaxies that overlap with the Spitzer Infrared Nearby Galaxies Survey (SINGS), we now compare these results with those obtained from an I-L color map. Our goal is to determine whether or not a detected distant galaxy indicates a gap in the dusty ISM, and hence to better understand the nature and geometry of the disk extinction. We find that distant galaxies are predominantly in low-extinction sections marked by the color maps, indicating that their number depends both on the cloud cover of {\it Spitzer}-resolved dust structures --mostly the spiral arms--and a diffuse, unresolved underlying disk. We note that our infrared color map (E[I-L]) underestimates the overall dust presence in these disks severely, because it implicitly assumes the presence of a dust screen in front of the stellar distribution.Comment: 22 pages, 2 figures, 3 tables, accepted for publication in A

    The Calibration of Mid-Infrared Star Formation Rate Indicators

    Get PDF
    With the goal of investigating the degree to which the mid-infrared emission traces the star formation rate (SFR), we analyze Spitzer 8 um and 24 um data of star-forming regions in a sample of 33 nearby galaxies with available HST/NICMOS images in the Paschen-alpha (1.8756 um) emission line. The galaxies are drawn from the Spitzer Infrared Nearby Galaxies Survey (SINGS) sample, and cover a range of morphologies and a factor ~10 in oxygen abundance. Published data on local low-metallicity starburst galaxies and Luminous Infrared Galaxies are also included in the analysis. Both the stellar-continuum-subtracted 8 um emission and the 24 um emission correlate with the extinction-corrected Pa-alpha line emission, although neither relationship is linear. Simple models of stellar populations and dust extinction and emission are able to reproduce the observed non-linear trend of the 24 um emission versus number of ionizing photons, including the modest deficiency of 24 um emission in the low metallicity regions, which results from a combination of decreasing dust opacity and dust temperature at low luminosities. Conversely, the trend of the 8 um emission as a function of the number of ionizing photons is not well reproduced by the same models. The 8 um emission is contributed, in larger measure than the 24 um emission, by dust heated by non-ionizing stellar populations, in agreement with previous findings. Two SFR calibrations, one using the 24 um emission and the other using a combination of the 24 um and H-alpha luminosities (Kennicutt et al. 2007), are presented. No calibration is presented for the 8 um emission, because of its significant dependence on both metallicity and environment. The calibrations presented here should be directly applicable to systems dominated by on-going star formation.Comment: 67 pages, 15 figures, accepted for publication on the Astrophysical Journal; replacement contains: correction to equation 8; important tweaks to equation 9; various typos correcte

    Mid-Infrared IRS Spectroscopy of NGC 7331: A First Look at the SINGS Legacy

    Full text link
    The nearby spiral galaxy NGC 7331 was spectrally mapped from 5-38um using all modules of Spitzer's IRS spectrograph. A strong new dust emission feature, presumed due to PAHs, was discovered at 17.1um. The feature's intensity is nearly half that of the ubiquitous 11.3um band. The 7-14um spectral maps revealed significant variation in the 7.7 and 11.3um PAH features between the stellar ring and nucleus. Weak [OIV] 25.9um line emission was found to be centrally concentrated in the nucleus, with an observed strength over 10% of the combined neon line flux, indicating an AGN or unusually active massive star photo-ionization. Two [SIII] lines fix the characteristic electron density in the HII regions at n_e < ~200 cm^-3. Three detected H_2 rotational lines, tracing warm molecular gas, together with the observed IR continuum, are difficult to match with standard PDR models. Either additional PDR heating or shocks are required to simultaneously match lines and continuum.Comment: 6 pages, 5 figures, accepted for publication in ApJS Spitzer Special Issu

    The Opacity of Spiral Galaxy Disks VIII: Structure of the Cold ISM

    Get PDF
    The quantity of dust in a spiral disk can be estimated using the dust's typical emission or the extinction of a known source. In this paper, we compare two techniques, one based on emission and one on absorption, applied on sections of fourteen disk galaxies. The two measurements reflect, respectively the average and apparent optical depth of a disk section. Hence, they depend differently on the average number and optical depth of ISM structures in the disk. The small scale geometry of the cold ISM is critical for accurate models of the overall energy budget of spiral disks. ISM geometry, relative contributions of different stellar populations and dust emissivity are all free parameters in galaxy Spectral Energy Distribution (SED) models; they are also sometimes degenerate, depending on wavelength coverage. Our aim is to constrain typical ISM geometry. The apparent optical depth measurement comes from the number of distant galaxies seen in HST images through the foreground disk. We measure the IR flux in images from the {\it Spitzer} Infrared Nearby Galaxy Survey in the same section of the disk that was covered by HST. A physical model of the dust is fit to the SED to estimate the dust surface density, mean temperature, and brightness in these disk sections. The surface density is subsequently converted into the average optical depth estimate. The two measurements generally agree. The ratios between the measured average and apparent optical depths of the disk sections imply optically thin clouds in these disks. Optically thick disks, are likely to have more than a single cloud along the line-of-sight.Comment: 31 pages, 5 figures, 4 tables, accepted for publication in A

    Infrared Spectral Energy Distributions of Nearby Galaxies

    Full text link
    The Spitzer Infrared Nearby Galaxies Survey (SINGS) is carrying out a comprehensive multi-wavelength survey on a sample of 75 nearby galaxies. The 1-850um spectral energy distributions are presented using broadband imaging data from Spitzer, 2MASS, ISO, IRAS, and SCUBA. The infrared colors derived from the globally-integrated Spitzer data are generally consistent with the previous generation of models that were developed based on global data for normal star-forming galaxies, though significant deviations are observed. Spitzer's excellent sensitivity and resolution also allow a detailed investigation of the infrared spectral energy distributions for various locations within the three large, nearby galaxies NGC3031 (M81), NGC5194 (M51), and NGC7331. Strong correlations exist between the local star formation rate and the infrared colors f_nu(70um)/f_nu(160um) and f_nu(24um)/f_nu(160um), suggesting that the 24 and 70um emission are useful tracers of the local star formation activity level. Preliminary evidence indicates that variations in the 24um emission, and not variations in the emission from polycyclic aromatic hydrocarbons at 8um, drive the variations in the f_nu(8.0um)/f_nu(24um) colors within NGC3031, NGC5194, and NGC7331. If the galaxy-to-galaxy variations in spectral energy distributions seen in our sample are representative of the range present at high redshift then extrapolations of total infrared luminosities and star formation rates from the observed 24um flux will be uncertain at the factor-of-five level (total range). The corresponding uncertainties using the redshifted 8.0um flux (e.g. observed 24um flux for a z=2 source) are factors of 10-20. Considerable caution should be used when interpreting such extrapolated infrared luminosities.Comment: 32 pages including 16 figures; accepted for publication in the Astrophysical Journa
    • …
    corecore