6,991 research outputs found
In-Chain Tunneling Through Charge-Density Wave Nanoconstrictions and Break-Junctions
We have fabricated longitudinal nanoconstrictions in the charge-density wave
conductor (CDW) NbSe using a focused ion beam and using a mechanically
controlled break-junction technique. Conductance peaks are observed below the
TK and TK CDW transitions, which correspond closely
with previous values of the full CDW gaps and
obtained from photo-emission. These results can be explained by assuming
CDW-CDW tunneling in the presence of an energy gap corrugation
comparable to , which eliminates expected peak at
. The nanometer length-scales our experiments imply
indicate that an alternative explanation based on tunneling through
back-to-back CDW-normal junctions is unlikely.Comment: 5 pages, 3 figures, submitted to physical review letter
Theranostic Potential of Oncolytic Vaccinia Virus
Biological cancer therapies, such as oncolytic, or replication-selective viruses have advantages over traditional therapeutics as they can employ multiple different mechanisms to target and destroy cancers (including direct cell lysis, immune activation and vascular collapse). This has led to their rapid recent clinical development. However this also makes their pre-clinical and clinical study complex, as many parameters may affect their therapeutic potential and so defining reason for treatment failure or approaches that might enhance their therapeutic activity can be complicated. The ability to non-invasively image viral gene expression in vivo both in pre-clinical models and during clinical testing will considerably enhance the speed of oncolytic virus development as well as increasing the level and type of useful data produced from these studies. Further, subsequent to future clinical approval, imaging of reporter gene expression might be used to evaluate the likelihood of response to oncolytic viral therapy prior to changes in tumor burden. Here different reporter genes used in conjunction with oncolytic viral therapy are described, along with the imaging modalities used to measure their expression, while their applications both in pre-clinical and clinical testing are discussed. Possible future applications for reporter gene expression from oncolytic viruses in the phenotyping of tumors and the personalizing of treatment regimens are also discussed
Relativistic Stellar Pulsations With Near-Zone Boundary Conditions
A new method is presented here for evaluating approximately the pulsation
modes of relativistic stellar models. This approximation relies on the fact
that gravitational radiation influences these modes only on timescales that are
much longer than the basic hydrodynamic timescale of the system. This makes it
possible to impose the boundary conditions on the gravitational potentials at
the surface of the star rather than in the asymptotic wave zone of the
gravitational field. This approximation is tested here by predicting the
frequencies of the outgoing non-radial hydrodynamic modes of non-rotating
stars. The real parts of the frequencies are determined with an accuracy that
is better than our knowledge of the exact frequencies (about 0.01%) except in
the most relativistic models where it decreases to about 0.1%. The imaginary
parts of the frequencies are determined with an accuracy of approximately M/R,
where M is the mass and R is the radius of the star in question.Comment: 10 pages (REVTeX 3.1), 5 figs., 1 table, fixed minor typos, published
in Phys. Rev. D 56, 2118 (1997
High Resolution Ionization of Ultracold Neutral Plasmas
Collective effects, such as waves and instabilities, are integral to our
understanding of most plasma phenomena. We have been able to study these in
ultracold neutral plasmas by shaping the initial density distribution through
spatial modulation of the ionizing laser intensity. We describe a relay imaging
system for the photoionization beam that allows us to create higher resolution
features and its application to extend the observation of ion acoustic waves to
shorter wavelengths. We also describe the formation of sculpted density
profiles to create fast expansion of plasma into vacuum and streaming plasmas
What is the maximum rate at which entropy of a string can increase?
According to Susskind, a string falling toward a black hole spreads
exponentially over the stretched horizon due to repulsive interactions of the
string bits. In this paper such a string is modeled as a self-avoiding walk and
the string entropy is found. It is shown that the rate at which
information/entropy contained in the string spreads is the maximum rate allowed
by quantum theory. The maximum rate at which the black hole entropy can
increase when a string falls into a black hole is also discussed.Comment: 11 pages, no figures; formulas (18), (20) are corrected (the quantum
constant is added), a point concerning a relation between the Hawking and
Hagedorn temperatures is corrected, conclusions unchanged; accepted by
Physical Review D for publicatio
Minimum Length from Quantum Mechanics and Classical General Relativity
We derive fundamental limits on measurements of position, arising from
quantum mechanics and classical general relativity. First, we show that any
primitive probe or target used in an experiment must be larger than the Planck
length, . This suggests a Planck-size {\it minimum ball} of uncertainty in
any measurement. Next, we study interferometers (such as LIGO) whose precision
is much finer than the size of any individual components and hence are not
obviously limited by the minimum ball. Nevertheless, we deduce a fundamental
limit on their accuracy of order . Our results imply a {\it device
independent} limit on possible position measurements.Comment: 8 pages, latex, to appear in the Physical Review Letter
Comments on the black hole information problem
String theory provides numerous examples of duality between gravitational
theories and unitary gauge theories. To resolve the black hole information
paradox in this setting, it is necessary to better understand how unitarity is
implemented on the gravity side. We argue that unitarity is restored by
nonlocal effects whose initial magnitude is suppressed by the exponential of
the Bekenstein-Hawking entropy. Time-slicings for which effective field theory
is valid are obtained by demanding the mutual back-reaction of quanta be small.
The resulting bounds imply that nonlocal effects do not lead to observable
violations of causality or conflict with the equivalence principle for
infalling observers, yet implement information retrieval for observers who stay
outside the black hole.Comment: 18 pages, 2 figures, revtex, v2 figure added and some improvements to
presentatio
Gravitational waves from relativistic neutron star mergers with nonzero-temperature equations of state
We analyze the gravitational wave (GW) emission from our recently published
set of relativistic neutron star (NS) merger simulations and determine
characteristic signal features that allow one to link GW measurements to the
properties of the merging binary stars. We find that the distinct peak in the
GW energy spectrum that is associated with the formation of a hypermassive
merger remnant has a frequency that depends strongly on the properties of the
nuclear equation of state (EoS) and on the total mass of the binary system,
whereas the mass ratio and the NS spins have a weak influence. If the total
mass can be determined from the inspiral chirp signal, the peak frequency of
the postmerger signal is a sensitive indicator of the EoS.Comment: 5 pages, 4 figures, revised version accepted for publication in PR
Viewing the Shadow of the Black Hole at the Galactic Center
In recent years, the evidence for the existence of an ultra-compact
concentration of dark mass associated with the radio source Sgr A* in the
Galactic Center has become very strong. However, an unambiguous proof that this
object is indeed a black hole is still lacking. A defining characteristic of a
black hole is the event horizon. To a distant observer, the event horizon casts
a relatively large ``shadow'' with an apparent diameter of ~10 gravitational
radii due to bending of light by the black hole, nearly independent of the
black hole spin or orientation. The predicted size (~30 micro-arcseconds) of
this shadow for Sgr A* approaches the resolution of current
radio-interferometers. If the black hole is maximally spinning and viewed
edge-on, then the shadow will be offset by ~8 micro-arcseconds from the center
of mass, and will be slightly flattened on one side. Taking into account
scatter-broadening of the image in the interstellar medium and the finite
achievable telescope resolution, we show that the shadow of Sgr A* may be
observable with very long-baseline interferometry at sub-millimeter
wavelengths, assuming that the accretion flow is optically thin in this region
of the spectrum. Hence, there exists a realistic expectation of imaging the
event horizon of a black hole within the next few years.Comment: 5 pages, 1 figure (color), (AAS)Tex, to appear in The Astrophysical
Journal Letters, Vol. 528, L13 (Jan 1, 2000 issue); also available at
http://www.mpifr-bonn.mpg.de/staff/hfalcke/publications.html#bhimag
Tidal Stabilization of Rigidly Rotating, Fully Relativistic Neutron Stars
It is shown analytically that an external tidal gravitational field increases
the secular stability of a fully general relativistic, rigidly rotating neutron
star that is near marginal stability, protecting it against gravitational
collapse. This stabilization is shown to result from the simple fact that the
energy required to raise a tide on such a star, divided by the
square of the tide's quadrupole moment , is a decreasing function of the
star's radius , (where, as changes, the
star's structure is changed in accord with the star's fundamental mode of
radial oscillation). If were positive, the tidal
coupling would destabilize the star. As an application, a rigidly rotating,
marginally secularly stable neutron star in an inspiraling binary system will
be protected against secular collapse, and against dynamical collapse, by tidal
interaction with its companion. The ``local-asymptotic-rest-frame'' tools used
in the analysis are somewhat unusual and may be powerful in other studies of
neutron stars and black holes interacting with an external environment. As a
byproduct of the analysis, in an appendix the influence of tidal interactions
on mass-energy conservation is elucidated.Comment: Revtex, 10 pages, 2 figures; accepted for publication in Physical
Review D. Revisions: Appendix rewritten to clarify how, in Newtonian
gravitation theory, ambiguity in localization of energy makes interaction
energy ambiguous but leaves work done on star by tidal gravity unambiguous.
New footnote 1 and Refs. [11] and [19
- …