2,602 research outputs found

    Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg(257)/Lys(260), and unmasking of acid-base catalysis

    Get PDF
    Glyoxalase II (GloII) is a ubiquitous thioester hydrolase catalyzing the last step of the glutathione-dependent conversion of 2-oxoaldehydes to 2-hydroxycarboxylic acids. Here, we present a detailed structure-function analysis of cGloII from the malaria parasite Plasmodium falciparum. The activity of the enzyme was salt-sensitive and pH-log k(cat) and pH-log k(cat)/K-m profiles revealed acid-base catalysis. An acidic pK(a)(app) value of approximately 6 probably reflects hydroxide formation at the metal center. The glutathione-binding site was analyzed by site-directed mutagenesis. Substitution of residue Arg(154) caused a 2.5-fold increase of K-m(app), whereas replacements of Arg(257) or Lys(260) were far more detrimental. Although the glutathione-binding site and the catalytic center are separated, six of six single mutations at the substrate-binding site decreased the k(cat)(app) value. Furthermore, product inhibition studies support a Theorell-Chance Bi Bi mechanism with glutathione as the second product. We conclude that the substrate is predominantly bound via ionic interactions with the conserved residues Arg(257) and Lys(260), and that correct substrate binding is a pH-and salt-dependent rate-limiting step for catalysis. The presented mechanistic model is presumably also valid for GloII from many other organisms. Our study could be valuable for drug development strategies and enhances the understanding of the chemistry of binuclear metallohydrolases

    The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy

    Get PDF
    The discovery of increased formation of methylglyoxal (MG) by cell metabolism in high glucose concentration in vitro suggested possible relevance to diabetes and diabetes complications (1,2). MG is the precursor of quantitatively important advanced glycation end products (AGEs) of protein and DNA- and MG-derived AGEs increase in experimental and clinical diabetes (3,4). Increased MG and its metabolism by glyoxalase 1 (Glo1) was linked to clinical microvascular complications (nephropathy, retinopathy, and neuropathy) (5). Current clinical treatment decreasing MG and MG-derived AGEs, such as insulin lispro (6,7), has some clinical benefit in diabetic nephropathy (8), although the decrease in MG-derived AGE exposure is minor—∼17% (7). Greater benefits may be achieved with specific and effective anti-MG targeted therapy. An outstanding research problem is to gain unequivocal evidence that MG glycation is a key mediator of vascular complications and, if possible, provide some pointers as to how MG glycation could be effectively countered. In this issue, the study by Giacco et al. (9) provides key evidence by a functional genomic approach manipulating expression of Glo1 to increase or decrease endogenous MG glycation. The outcomes show that development of experimental diabetic nephropathy is driven by increased levels of MG glycation and increasing renal expression of Glo1 prevents this. Recent research has shown Glo1 expression may be increased by small molecule inducers (10). Taken together, these findings suggest that prevention and treatment of diabetic nephropathy and possibly other complications of diabetes may be improved by development of Glo1 inducers

    Imidazopurinones are markers of physiological genomic damage linked to DNA instability and glyoxalase 1-associated tumour multidrug resistance

    Get PDF
    Glyoxal and methylglyoxal are reactive dicarbonyl metabolites formed and metabolized in physiological systems. Increased exposure to these dicarbonyls is linked to mutagenesis and cytotoxicity and enhanced dicarbonyl metabolism by overexpression of glyoxalase 1 is linked to tumour multidrug resistance in cancer chemotherapy. We report herein that glycation of DNA by glyoxal and methylglyoxal produces a quantitatively important class of nucleotide adduct in physiological systems—imidazopurinones. The adduct derived from methylglyoxal-3-(2′-deoxyribosyl)-6,7-dihydro-6,7-dihydroxy-6/7-methylimidazo-[2,3-b]purine-9(8)one isomers—was the major quantitative adduct detected in mononuclear leukocytes in vivo and tumour cell lines in vitro. It was linked to frequency of DNA strand breaks and increased markedly during apoptosis induced by a cell permeable glyoxalase 1 inhibitor. Unexpectedly, the DNA content of methylglyoxal-derived imidazopurinone and oxidative marker 7,8-dihydro-8-oxo-2′-deoxyguanosine were increased moderately in glyoxalase 1-linked multidrug resistant tumour cell lines. Together these findings suggest that imidazopurinones are a major type of endogenous DNA damage and glyoxalase 1 overexpression in tumour cells strives to counter increased imidazopurinone formation in tumour cells likely linked to their high glycolytic activity

    Reconstructing Deglacial Circulation Changes in the Northern North Atlantic and Nordic Seas: Δ14C, δ13C, Temperature and δ18OSW Evidence

    Get PDF
    Ice-core records have revealed that atmospheric CO2 has varied during glacial-interglacial by ~90 ppm, with rapid increases in atmospheric CO2 occurring during deglaciations. It is widely accepted that changes in the amount of carbon stored in the deep ocean play a leading role in explaining these cycles, primarily because of the size of the deep ocean carbon reservoir (~60 times that of the atmosphere) and the millennial timescales on which it interacts with the atmosphere (Sigman et al. 2010). To gain an understanding of how changes in deep ocean carbon storage may have controlled past variations in atmospheric CO2, we ideally require robust and detailed proxy records of the properties and ventilation pathways of the deep ocean across glacial-interglacial transitions. The deep ocean is ventilated in the high latitudes, where dense isopycnals outcrop at the sea surface. Therefore to help understand deep ocean-atmosphere exchange we require reconstructions of past hydrographic changes at these high latitude ventilation sites. Furthermore, constraints on the timing and phasing of deglacial changes in these regions enable us to evaluate hypotheses regarding the underlying mechanisms of the glacial termination

    Glyoxalase 1 modulation in obesity and diabetes

    Get PDF
    Significance: Obesity and type 2 diabetes mellitus are increasing globally. There is also increasing associated complications, such as non-alcoholic fatty liver disease (NAFLD) and vascular complications of diabetes. There is currently no licensed treatment for NAFLD and no recent treatments for diabetic complications. New approaches are required, particularly those addressing mechanism-based risk factors for health decline and disease progression. Recent Advances: Dicarbonyl stress is the abnormal accumulation of reactive dicarbonyl metabolites such as methylglyoxal (MG) leading to cell and tissue dysfunction. It is a potential driver of obesity, diabetes, and related complications that are unaddressed by current treatments. Increased formation of MG is linked to increased glyceroneogenesis and hyperglycemia in obesity and diabetes and also down-regulation of glyoxalase 1 (Glo1)—which provides the main enzymatic detoxification of MG. Glo1 functional genomics studies suggest that increasing Glo1 expression and activity alleviates dicarbonyl stress; slows development of obesity, related insulin resistance; and prevents development of diabetic nephropathy and other microvascular complications of diabetes. A new therapeutic approach constitutes small-molecule inducers of Glo1 expression—Glo1 inducers—exploiting a regulatory antioxidant response element in the GLO1 gene. A prototype Glo1 inducer, trans-resveratrol (tRES)-hesperetin (HESP) combination, in corrected insulin resistance, improved glycemic control and vascular inflammation in healthy overweight and obese subjects in clinical trial. Critical Issues: tRES and HESP synergize pharmacologically, and HESP likely overcomes the low bioavailability of tRES by inhibition of intestinal glucuronosyltransferases. Future Directions: Glo1 inducers may now be evaluated in Phase 2 clinical trials for treatment of NAFLD and vascular complications of diabetes

    Advanced glycation endproducts in the pathogenesis of chronic kidney disease

    Get PDF
    Advanced glycation endproducts (AGEs) are stable post-translational modifications of proteins formed by the spontaneous reaction with glucose and related metabolites. Important AGEs quantitatively are methylglyoxal (MG)-derived hydroimidazolone MG-H1, Nε- carboxymethyl-lysine (CML) and glucosepane. They contribute to the development of chronic kidney disease (CKD). Cellular proteolysis of AGE-modified proteins forms AGE free adducts, glycated amino acids, which are cleared by the kidneys and excreted in urine. Dietary AGEs mainly supplement the endogenous flux of AGE free adduct formation. AGE free adducts accumulate markedly in plasma with decline in glomerular filtration rate. A key precursor of AGEs is the dicarbonyl metabolite, MG, which is metabolised by glyoxalase 1 (Glo1) of the cytoplasmic glyoxalase system. Proteins susceptible to MG modification are called collectively the “dicarbonyl proteome”. Abnormal increase of MG “dicarbonyl stress” and is a characteristic of CKD, driven by down regulation of renal Glo1, increasing flux of MG-H1 formation. Protein inactivation and dysfunction linked to the dicarbonyl proteome contributes to CKD development. The receptor for AGEs, RAGE, is important in development of CKD but its interaction with AGEs in vivo remains enigmatic; other ligands and ternary complexation may be influential. Prevention of diabetic kidney disease (DKD) by overexpression of Glo1 in transgenic animal models has stimulated the development of small molecule inducers of Glo1 expression, “Glo1 inducers”, to prevent AGE formation. trans- Resveratrol-hesperetin combination therapy is a Glo1 inducer. In clinical trial it gave a profound improvement in insulin resistance and vascular inflammation. It may find future therapeutic application for treatment of DKD

    Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease

    Get PDF
    Dicarbonyl stress is the abnormal accumulation of dicarbonyl metabolites leading to increased protein and DNA modification contributing to cell and tissue dysfunction in ageing and disease. Enzymes metabolising dicarbonyls, glyoxalase 1 and aldoketo reductases, provide an efficient and stress-response enzyme defence against dicarbonyl stress. Dicarbonyl stress is produced by increased formation and/or decreased metabolism of dicarbonyl metabolites, and by exposure to exogenous dicarbonyls. It contributes to ageing, disease and activity of cytototoxic chemotherapeutic agents
    corecore