12 research outputs found

    Somatosensory System Deficits in Schizophrenia Revealed by MEG during a Median-Nerve Oddball Task

    Get PDF
    Although impairments related to somatosensory perception are common in schizophrenia, they have rarely been examined in functional imaging studies. In the present study, magnetoencephalography (MEG) was used to identify neural networks that support attention to somatosensory stimuli in healthy adults and abnormalities in these networks in patient with schizophrenia. A median-nerve oddball task was used to probe attention to somatosensory stimuli, and an advanced, high-resolution MEG source-imaging method was applied to assess activity throughout the brain. In nineteen healthy subjects, attention-related activation was seen in a sensorimotor network involving primary somatosensory (S1), secondary somatosensory (S2), primary motor (M1), pre-motor (PMA), and paracentral lobule (PCL) areas. A frontal–parietal–temporal “attention network”, containing dorsal- and ventral–lateral prefrontal cortex (DLPFC and VLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), superior parietal lobule (SPL), inferior parietal lobule (IPL)/supramarginal gyrus (SMG), and temporal lobe areas, was also activated. Seventeen individuals with schizophrenia showed early attention-related hyperactivations in S1 and M1 but hypo-activation in S1, S2, M1, and PMA at later latency in the sensorimotor network. Within this attention network, hypoactivation was found in SPL, DLPFC, orbitofrontal cortex, and the dorsal aspect of ACC. Hyperactivation was seen in SMG/IPL, frontal pole, and the ventral aspect of ACC in patients. These findings link attention-related somatosensory deficits to dysfunction in both sensorimotor and frontal–parietal–temporal networks in schizophrenia

    A Reply

    No full text

    When Top-Down Meets Bottom-Up: Auditory Training Enhances Verbal Memory in Schizophrenia

    No full text
    A critical research priority for our field is to develop treatments that enhance cognitive functioning in schizophrenia and thereby attenuate the functional losses associated with the illness. In this article, we describe such a treatment method that is grounded in emerging research on the widespread sensory processing impairments of schizophrenia, as described elsewhere in this special issue. We first present the rationale for this treatment approach, which consists of cognitive training exercises that make use of principles derived from the past 2 decades of basic science research in learning-induced neuroplasticity; these exercises explicitly target not only the higher order or “top-down” processes of cognition but also the content building blocks of accurate and efficient sensory representations to simultaneously achieve “bottom-up” remediation. We then summarize our experience to date and briefly review our behavioral and serum biomarker findings from a randomized controlled trial of this method in outpatients with long-term symptoms of schizophrenia. Finally, we present promising early psychophysiological evidence that supports the hypothesis that this cognitive training method induces changes in aspects of impaired bottom-up sensory processing in schizophrenia. We conclude with the observation that neuroplasticity-based cognitive training brings patients closer to physiological patterns seen in healthy participants, suggesting that it changes the brain in an adaptive manner in schizophrenia

    Equivalent mismatch negativity deficits across deviant types in early illness schizophrenia-spectrum patients

    No full text
    Neurophysiological abnormalities in auditory deviance processing, as reflected by the mismatch negativity (MMN), have been observed across the course of schizophrenia. Studies in early schizophrenia patients have typically shown varying degrees of MMN amplitude reduction for different deviant types, suggesting that different auditory deviants are uniquely processed and may be differentially affected by duration of illness. To explore this further, we examined the MMN response to 4 auditory deviants (duration, frequency, duration + frequency “double deviant”, and intensity) in 24 schizophrenia-spectrum patients early in the illness (ESZ) and 21 healthy controls. ESZ showed significantly reduced MMN relative to healthy controls for all deviant types (p < 0.05), with no significant interaction with deviant type. No correlations with clinical symptoms were present (all ps > 0.05). These findings support the conclusion that neurophysiological mechanisms underlying processing of auditory deviants are compromised early in illness, and these deficiencies are not specific to the type of deviant presented
    corecore