80 research outputs found

    Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis (IMODALS): a phase 2a randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Low-dose interleukin-2 (ld-IL-2) enhances regulatory T-cell (Treg) function in auto-inflammatory conditions. Neuroinflammation being a pathogenic feature of amyotrophic lateral sclerosis (ALS), we evaluated the pharmacodynamics and safety of ld-IL-2 in ALS subjects. Methods We performed a single centre, parallel three-arm, randomised, double-blind, placebo-controlled study. Eligibility criteria included age 3 months, and a slow vital capacity ≥ 70% of normal. Patients were randomised (1:1:1) to aldesleukin 2 MIU, 1 MIU, or placebo once daily for 5 days every 4 weeks for 3 cycles. Primary outcome was change from baseline in Treg percentage of CD4+ T cells (%Tregs) following a first cycle. Secondary laboratory outcomes included: %Treg and Treg number following repeated cycles, and plasma CCL2 and neurofilament light chain protein (NFL) concentrations as surrogate markers of efficacy. Safety outcomes included motor-function (ALSFRS-R), slow vital capacity (SVC), and adverse event reports. This trial is registered with ClinicalTrials.gov, NCT02059759. Findings All randomised patients (12 per group), recruited from October 2015 to December 2015, were alive at the end of follow-up and included in the intent-to-treat (ITT) analysis. No drug-related serious adverse event was observed. Non-serious adverse events occurred more frequently with the 1 and 2 MIU IL-2 doses compared to placebo, including injection site reactions and flu-like symptoms. Primary outcome analysis showed a significant increase (p < 0·0001) in %Tregs in the 2 MIU and 1 MIU arms (mean [SD]: 2 MIU: +6·2% [2·2]; 1 MIU: +3·9% [1·2]) as compared to placebo (mean [SD]: -0·49% [1·3]). Effect sizes (ES) were large in treated groups: 2 MIU ES=3·7 (IC95%: 2·3–4·9) and 1 MIU ES=3·5 (IC95%: 2·1–4·6). Secondary outcomes showed a significant increase in %Tregs following repeated cycles (p < 0·0001) as compared to placebo, and a dose-dependent decrease in plasma CCL2 (p = 0·0049). There were no significant differences amongst the three groups on plasma NFL levels. Interpretation Ld-IL-2 is well tolerated and immunologically effective in subjects with ALS. These results warrant further investigation into their eventual therapeutic impact on slowing ALS disease progression

    Shifts in risk sensitivity and resource availability alter fat stores for a large mammal following extreme winter conditions

    Get PDF
    For species that inhabit environments where resource availability may be unpredictable, balance of resource allocation to life-history traits can have heightened consequences for survival, reproduction, and ultimately, fitness. Acquisition and allocation of energy to maintenance, capital gain and reproduction should be in tune with the landscape an animal inhabits—environmental severity, food availability and population size all influence the resources animals have and dictate the ways they should be allocated. In seasonal environments, animals that experience periods of extreme resource limitation (e.g. harsh winters) may favour allocation of resources to body reserves to secure their survival at the cost of reproduction (i.e. risk averse). In contrast, the same accumulation of body reserves may not be necessary to survive in relatively benign landscapes where instead, allocation to reproduction is favoured (i.e. risk prone). According to the theory of risk-sensitive allocation of resources, when animals are exposed to unprecedented or life-threatening conditions, they may shift resource allocation to favour building capital over allocation in reproduction to preempt against encountering another life-threatening event in the future. Using data from a long-term project on a highly site-faithful and long-lived species, mule deer (Odocoileus hemionus), we evaluated how a life-threatening winter and the associated changes in resource availability resulting from a population reduction influenced how animals acquired and allocated energy to survival (i.e. fat accumulation). Per capita precipitation, and the associated reduction in population abundance after the severe winter, had a positive influence of accrual of fat over summer. After the extreme physiological stress of a hard winter, deer starting spring with low body reserves accumulated 2.8 percentage points more fat over summer compared with before the experience of a bad winter and had an increased probability of recruiting fewer offspring. Fat stores can interact with environment, life history and behaviour to influence survival during periods of resource scarcity. For a long-lived herbivore, we documented shifts in risk tolerance associated with fat accrual in preparation for winter, supporting the notion that risk-sensitive allocation of resources may be plastic—an essential adaptation for animals to cope with rapidly changing landscapes.publishedVersio

    Combined Regulatory T-Lymphocyte and IL-2 Treatment Is Safe, Tolerable, and Biologically Active for 1 Year in Persons With Amyotrophic Lateral Sclerosis

    Get PDF
    BACKGROUND AND OBJECTIVES: In a phase 1 amyotrophic lateral sclerosis (ALS) study, autologous infusions of expanded regulatory T-lymphocytes (Tregs) combined with subcutaneous interleukin (IL)-2 were safe and well tolerated. Treg suppressive function increased and disease progression stabilized during the study. The present study was conducted to confirm the reliability of these results. METHODS: Participants with ALS underwent leukapheresis, and their Tregs were isolated and expanded in a current Good Manufacturing Practice facility. Seven participants were randomly assigned in a 1:1 ratio to receive Treg infusions (1 × 10 RESULTS: The Treg/IL-2 treatments were safe and well tolerated, and Treg suppressive function was higher in the active group of the RCT. A meaningful evaluation of progression rates in the RCT between the placebo and active groups was not possible due to the limited number of enrolled participants aggravated by the COVID-19 pandemic. In the 24-week OLE, the Treg/IL-2 treatments were also safe and well tolerated in 8 participants who completed the escalating doses. Treg suppressive function and numbers were increased compared with baseline. Six of 8 participants changed by an average of -2.7 points per the ALS Functional Rating Scale-Revised, whereas the other 2 changed by an average of -10.5 points. Elevated levels of 2 markers of peripheral inflammation (IL-17C and IL-17F) and 2 markers of oxidative stress (oxidized low-density lipoprotein receptor 1 and oxidized LDL) were present in the 2 rapidly progressing participants but not in the slower progressing group. DISCUSSION: Treg/IL-2 treatments were safe and well tolerated in the RCT and OLE with higher Treg suppressive function. During the OLE, 6 of 8 participants showed slow to no progression. The 2 of 8 rapid progressors had elevated markers of oxidative stress and inflammation, which may help delineate responsiveness to therapy. Whether Treg/IL-2 treatments can slow disease progression requires a larger clinical study (ClinicalTrials.gov number, NCT04055623). CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that Treg infusions and IL-2 injections are safe and effective for patients with ALS

    Critical Role of PI3K/Akt/GSK3β in Motoneuron Specification from Human Neural Stem Cells in Response to FGF2 and EGF

    Get PDF
    Fibroblast growth factor (FGF) and epidermal growth factor (EGF) are critical for the development of the nervous system. We previously discovered that FGF2 and EGF had opposite effects on motor neuron differentiation from human fetal neural stem cells (hNSCs), but the underlying mechanisms remain unclear. Here, we show that FGF2 and EGF differentially affect the temporal patterns of Akt and glycogen synthase kinase 3 beta (GSK3β) activation. High levels of phosphatidylinositol 3-kinase (PI3K)/Akt activation accompanied with GSK3β inactivation result in reduction of the motor neuron transcription factor HB9. Inhibition of PI3K/Akt by chemical inhibitors or RNA interference or overexpression of a constitutively active form of GSK3β enhances HB9 expression. Consequently, PI3K inhibition increases hNSCs differentiation into HB9+/microtubule-associated protein 2 (MAP2)+ motor neurons in vitro. More importantly, blocking PI3K not only enhances motor neuron differentiation from hNSCs grafted into the ventral horn of adult rat spinal cords, but also permits ectopic generation of motor neurons in the dorsal horn by overriding environmental influences. Our data suggest that FGF2 and EGF affect the motor neuron fate decision in hNSCs differently through a fine tuning of the PI3K/AKT/GSK3β pathway, and that manipulation of this pathway can enhance motor neuron generation

    Interaction between acrylic substrates and RAD16-I peptide in its self-assembling

    Full text link
    [EN] Self-assembling peptides (SAP) are widely used as scaffolds themselves, and recently as fillers of microporous scaffolds, where the former provides a cell-friendly nanoenvironment and the latter improves its mechanical properties. The characterization of the interaction between these short peptides and the scaffold material is crucial to assess the potential of such a combined system. In this work, the interaction between poly(ethyl acrylate) (PEA) and 90/10 ethyl acrylate-acrylic acid copolymer P(EAcoAAc) with the SAP RAD16-I has been followed using a bidimensional simplified model. By means of the techniques of choice (congo red staining, atomic force microscopy (AFM), and contact angle measurements) the interaction and self-assembly of the peptide has proven to be very sensitive to the wettability and electro-negativity of the polymeric substrate.The authors acknowledge funding through the European Commission FP7 project RECATABI (NMP3-SL-2009-229239), and from the Spanish Ministerio de Ciencia e Innovacion through projects MAT2011-28791-C03-02 and -03. This work was also supported by the Spanish Ministerio de Educacion through M. Arnal-Pastor FPU 2009-1870 grant. The authors acknowledge the assistance and advice of Electron Microscopy Service of the UPV.Arnal Pastor, MP.; González-Mora, D.; García-Torres, F.; Monleón Pradas, M.; Vallés Lluch, A. (2016). Interaction between acrylic substrates and RAD16-I peptide in its self-assembling. Journal of Polymer Research. 23(9):173-184. https://doi.org/10.1007/s10965-016-1069-3S173184239Davis ME, Motion JP, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang S, Lee RT (2005) Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111(4):442–450Zhang S, Lockshin C, Cook R, Rich A (1994) Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide. Biopolymers 34:663–672Zhang S, Altman M (1999) Peptide self-assembly in functional polymer science and engineering. Reac Func Polym 41:91–102Zhang S, Gelain F, Zhao X (2005) Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol 15(5):413–420Zhang S, Zhao X, Spirio L, PuraMatrix (2005) Self-assembling peptide nanofiber scaffolds. In: Ma PX, Elisseeff J (eds) Scaffolding in tissue Engineering. CRC Press, Boca Raton, FL, pp. 217–238Sieminski AL, Semino CE, Gong H, Kamm RD (2008) Primary sequence of ionic self-assembling peptide gels affects endothelial cell adhesion and capillary morphogenesis. J Biomed Mater Res A 87(2):494–504Quintana L, Fernández Muiños T, Genove E, Del Mar Olmos M, Borrós S, Semino CE (2009) Early tissue patterning recreated by mouse embryonic fibroblasts in a three-dimensional environment. Tissue Eng Part A 15(1):45–54Garreta E, Genové E, Borrós S, Semino CE (2006) Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold. Tissue Eng 12(8):2215–2227Semino CE, Merok JR, Crane GG, Panagiotakos G, Zhang S (2003) Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 71:262–270Thonhoff JR, Lou DI, Jordan PM, Zhao X, Compatibility WP (2008) Of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res 1187:42–51Tokunaga M, Liu ML, Nagai T, Iwanaga K, Matsuura K, Takahashi T, Kanda M, Kondo N, Wang P, Naito AT, Komuro I (2010) Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function after myocardial infarction. J Mol Cell Cardiol 49(6):972–983Takei J (2006) 3-Dimensional cell culture scaffold for everyone: drug screening. Tissue engineering and cancer biology. AATEX 11(3):170–176McGrath AM, Novikova LN, Novikov LN, Wiberg MBD (2010) ™ PuraMatrix™ peptide hydrogel seeded with Schwann cells for peripheral nerve regeneration. Brain Res Bull 83(5):207–213Wang W, Itoh S, Matsuda A, Aizawa T, Demura M, Ichinose S, Shinomiya K, Tanaka J (2008) Enhanced nerve regeneration through a bilayered chitosan tube: The effect ofintroduction of glycine spacer into the CYIGSR sequence. J Biomed Mater Res Part A 85:919–928Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, Stupp SI (2008) Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials 29(2):161–171Vallés-Lluch A, Arnal-Pastor M, Martínez-Ramos C, Vilariño-Feltrer G, Vikingsson L, Castells-Sala C, Semino CE, Monleón Pradas M (2013) Combining self-assembling peptide gels with three-dimensional elastomer scaffolds. Acta Biomater 9(12):9451–9460Valles-Lluch A, Arnal-Pastor M, Martinez-Ramos C, Vilarino-Feltrer G, Vikingsson L, Monleon Pradas M (2013) Grid polymeric scaffolds with polypeptide gel filling as patches for infarcted tissue regeneration. Conf Proc IEEE Eng Med Biol Soc 2013:6961–6964Soler-Botija C, Bagó JR, Llucià-Valldeperas A, Vallés-Lluch A, Castells-Sala C, Martínez-Ramos C, Fernández-Muiños T, Chachques JC, Monleón Pradas M, Semino CE, Bayes-Genis A (2014) Engineered 3D bioimplants using elastomeric scaffold, self-assembling peptide hydrogel, and adipose tissue-derived progenitor cells for cardiac regeneration. Am J Transl Res 6(3):291–301Martínez-Ramos M, Arnal-Pastor M, Vallés-Lluch A, Monleón Pradas M (2015) Peptide gel in a scaffold as a composite matrix for endothelial cells. J Biomed Mater Res Part A 103 A:3293–3302Rico P, Rodríguez Hernández JC, Moratal D, Altankov G, Monleón Pradas M, Salmerón-Sánchez M (2009) Substrate-induced assembly of fibronectin into networks: influence of surface chemistry and effect on osteoblast adhesion. Tissue Eng Part A 15(11):3271–3281Gugutkov D, Altankov G, Rodríguez Hernández JC, Monleón Pradas M, Salmerón Sánchez M (2010) Fibronectin activity on substrates with controlled -OH density. J Biomed Mater Res A 92(1):322–331Rodríguez Hernández JC, Salmerón Sánchez M, Soria JM, Gómez Ribelles JL, Monleón Pradas M (2007) Substrate chemistry-dependent conformations of single laminin molecules on polymer surfaces are revealed by the phase signal of atomic force microscopy. Biophys J 93(1):202–207Cantini M, Rico P, Moratal D, Salmerón-Sánchez M (2012) Controlled wettability, same chemistry: biological activity of plasma-polymerized coatings. Soft Matter 8:5575–5584Anselme K, Ponche A, Bigerelle M (2010) Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: biological aspects. Proc Inst Mech Eng H J Eng Med 224:1487–1507Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci U S A 99(8):5133–5138Busscher HJ, Vanpelt AWJ, Deboer P, Dejong HP, Arends J (1984) The effect of surface roughening of polymers on measured contact angles of liquids. Colloids Surf 9:319–331Birdi, KS. (1997) Surface tension of polymers. In: Yildrim Erbil H, ed. Handbook of surface and colloid chemistry CRC Press, Boca Raton, p. 292.Collier JH (2003) MessersmithPB.Enzymatic modification of self-assembled peptide structures with tissue transglutaminase. Bioconjug Chem 14(4):748–755Kakiuchi Y, Hirohashi N, Murakami-Murofushi K (2013) The macroscopic structure of RADA16 peptide hydrogel stimulates monocyte/macrophage differentiation in HL60 cells via cholesterol synthesis. BiochemBiophys Res Commun 433(3):298–304Pérez-Garnes M, González-García C, Moratal D, Rico P, Salmerón-Sánchez M (2011) Fibronectin distribution on demixednanoscale topographies. Int J Artif Organs 34(1):54–63Salmerón-Sánchez M, Rico P, Moratal D, Lee TT, Schwarzbauer JE, García AJ (2011) Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials 32(8):2099–2105Ye Z, Zhang H, Luo H, Wang S, Zhou Q, DU X, et al. (2008) Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I. J Pept Sci 14:152–162Keselowsky BG, Collard DM, García AJ (2004) Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials 25:5947–5954Scotchford CA, Gilmore CP, Cooper E, Leggett GJ, Downes S (2002) Protein adsorption and human osteoblast-like cell attachment and growth on alkylthiol on gold self-assembled monolayers. J Biomed Mater Res 59:84–99Coelho NM, González-García C, Planell JA, Salmerón-Sánchez M, Altankov G (2010) Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction. Eur Cell Mater 19:262–272Briz N, Antolinos-Turpin CM, Alió J, Garagorri N, Gómez Ribelles JL, Gómez-Tejedor JA (2013) Fibronectin fixation on poly(ethyl acrylate)-based copolymers. J Biomed Mater Res B Appl Biomater 101(6):991–997Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13(8):1741–1747Soria JM, Martínez Ramos C, Bahamonde O, García Cruz DM, Salmerón Sánchez M, García Esparza MA, Casas C, Guzmán M, Navarro X, Gómez Ribelles JL, García Verdugo JM, Monleón Pradas M, Barcia JA (2007) Influence of the substrate's hydrophilicity on the in vitro Schwann cells viability. J Biomed Mater Res A 83(2):463–470Van Krevelen, DW. (1997) Properties of polymers. Chapter 13 mechanical properties of solid polymers. Elsevier, pp. 367–43

    Dental pulp tissue engineering

    Get PDF
    Dental pulp is a highly specialized mesenchymal tissue, which have a restrict regeneration capacity due to anatomical arrangement and post-mitotic nature of odontoblastic cells. Entire pulp amputation followed by pulp-space disinfection and filling with an artificial material cause loss of a significant amount of dentin leaving as life-lasting sequelae a non-vital and weakened tooth. However, regenerative endodontics is an emerging field of modern tissue engineering that demonstrated promising results using stem cells associated with scaffolds and responsive molecules. Thereby, this article will review the most recent endeavors to regenerate pulp tissue based on tissue engineering principles and providing insightful information to readers about the different aspects enrolled in tissue engineering. Here, we speculate that the search for the ideal combination of cells, scaffolds, and morphogenic factors for dental pulp tissue engineering may be extended over future years and result in significant advances in other areas of dental and craniofacial research. The finds collected in our review showed that we are now at a stage in which engineering a complex tissue, such as the dental pulp, is no longer an unachievable and the next decade will certainly be an exciting time for dental and craniofacial research

    Combining self-assembling peptide gels with three-dimensional elastomer scaffolds

    Full text link
    [EN] Some of the problems raised by the combination of porous scaffolds and self-assembling peptide (SAP) gels as constructs for tissue engineering applications are addressed for the first time. Scaffolds of poly(- ethyl acrylate) and the SAP gel RAD16-I were employed. The in situ gelation of the SAP gel inside the pores of the scaffolds was studied. The scaffold-cum-gel constructs were characterized morphologically, physicochemically and mechanically. The possibility of incorporating an active molecule (bovine serum albumin, taken here as a model molecule for others) in the gel within the scaffold’s pores was assessed, and the kinetics of its release in phosphate-buffered saline was followed. Cell seeding and colonization of these constructs were preliminarily studied with L929 fibroblasts and subsequently checked with sheep adipose-tissue-derived stem cells intended for further preclinical studies. Static (conventional) and dynamically assisted seedings were compared for bare scaffolds and the scaffold-cum-gel constructs. The SAP gel inside the pores of the scaffold significantly improved the uniformity and density of cell colonization of the three-dimensional (3-D) structure. These constructs could be of use in different advanced tissue engineering applications, where, apart from a cell-friendly extracellular matrix -like aqueous environment, a larger-scale 3-D structure able to keep the cells in a specific place, give mechanical support and/or conduct spatially the tissue growth could be required.The authors acknowledge funding through the European Commission FP7 project RECATABI (NMP3-SL-2009-229239), and from the Spanish Ministerio de Ciencia e Innovacion through projects MAT2011-28791-C03-02 and -03. Dr. J.C. Chachques (Hopital Europeen Georges Pompidou, Paris) is thanked for providing the ASCs employed in this study. MMP acknowledges support of CIBER-BBN initiative, financed by Institut de Salud Carlos III (Spain) with the assistance of the European Regional Development Fund.Vallés Lluch, A.; Arnal Pastor, MP.; Martínez Ramos, C.; Vilariño Feltrer, G.; Vikingsson, L.; Castells Sala, C.; Semino, CE.... (2013). Combining self-assembling peptide gels with three-dimensional elastomer scaffolds. Acta Biomaterialia. 9(12):9451-9460. https://doi.org/10.1016/j.actbio.2013.07.038S9451946091

    Using polymeric materials to control stem cell behavior for tissue regeneration

    Full text link
    Patients with organ failure often suffer from increased morbidity and decreased quality of life. Current strategies of treating organ failure have limitations, including shortage of donor organs, low efficiency of grafts, and immunological problems. Tissue engineering emerged about two decades ago as a strategy to restore organ function with a living, functional engineered substitute. However, the ability to engineer a functional organ is limited by a limited understanding of the interactions between materials and cells that are required to yield functional tissue equivalents. Polymeric materials are one of the most promising classes of materials for use in tissue engineering, due to their biodegradability, flexibility in processing and property design, and the potential to use polymer properties to control cell function. Stem cells offer potential in tissue engineering because of their unique capacity to self‐renew and differentiate into neurogenic, osteogenic, chondrogenic, and myogenic lineages under appropriate stimuli from extracellular components. This review examines recent advances in stem cell–polymer interactions for tissue regeneration, specifically highlighting control of polymer properties to direct adhesion, proliferation, and differentiation of stem cells, and how biomaterials can be designed to provide some of the stimuli to cells that the natural extracellular matrix does. (Part C) 96:63–81, 2012. © 2012 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90582/1/21003_ftp.pd

    How Texas helped win the American Revolution

    No full text
    corecore