16,061 research outputs found
Energy Loss from Reconnection with a Vortex Mesh
Experiments in superfluid 4He show that at low temperatures, energy
dissipation from moving vortices is many orders of magnitude larger than
expected from mutual friction. Here we investigate other mechanisms for energy
loss by a computational study of a vortex that moves through and reconnects
with a mesh of small vortices pinned to the container wall. We find that such
reconnections enhance energy loss from the moving vortex by a factor of up to
100 beyond that with no mesh. The enhancement occurs through two different
mechanisms, both involving the Kelvin oscillations generated along the vortex
by the reconnections. At relatively high temperatures the Kelvin waves increase
the vortex motion, leading to more energy loss through mutual friction. As the
temperature decreases, the vortex oscillations generate additional reconnection
events between the moving vortex and the wall, which decrease the energy of the
moving vortex by transfering portions of its length to the pinned mesh on the
wall.Comment: 9 pages, 10 figure
Density functional theory study of the nematic-isotropic transition in an hybrid cell
We have employed the Density Functional Theory formalism to investigate the
nematic-isotropic capillary transitions of a nematogen confined by walls that
favor antagonist orientations to the liquid crystal molecules (hybrid cell). We
analyse the behavior of the capillary transition as a function of the
fluid-substrate interactions and the pore width. In addition to the usual
capillary transition between isotropic-like to nematic-like states, we find
that this transition can be suppressed when one substrate is wet by the
isotropic phase and the other by the nematic phase. Under this condition the
system presents interface-like states which allow to continuously transform the
nematic-like phase to the isotropic-like phase without undergoing a phase
transition. Two different mechanisms for the disappearance of the capillary
transition are identified. When the director of the nematic-like state is
homogeneously planar-anchored with respect to the substrates, the capillary
transition ends up in a critical point. This scenario is analogous to the
observed in Ising models when confined in slit pores with opposing surface
fields which have critical wetting transitions. When the nematic-like state has
a linearly distorted director field, the capillary transition continuously
transforms in a transition between two nematic-like states.Comment: 31 pages, 10 figures, submitted to J. Chem. Phy
Feedback methods for inverse simulation of dynamic models for engineering systems applications
Inverse simulation is a form of inverse modelling in which computer simulation methods are used to find the time histories of input variables that, for a given model, match a set of required output responses. Conventional inverse simulation methods for dynamic models are computationally intensive and can present difficulties for high-speed
applications. This paper includes a review of established methods of inverse simulation,giving some emphasis to iterative techniques that were first developed for aeronautical applications. It goes on to discuss the application of a different approach which is based on feedback principles. This feedback method is suitable for a wide range of linear and nonlinear dynamic models and involves two distinct stages. The first stage involves
design of a feedback loop around the given simulation model and, in the second stage, that closed-loop system is used for inversion of the model. Issues of robustness within
closed-loop systems used in inverse simulation are not significant as there are no plant uncertainties or external disturbances. Thus the process is simpler than that required for the development of a control system of equivalent complexity. Engineering applications
of this feedback approach to inverse simulation are described through case studies that put particular emphasis on nonlinear and multi-input multi-output models
Light scattering and phase behavior of Lysozyme-PEG mixtures
Measurements of liquid-liquid phase transition temperatures (cloud points) of
mixtures of a protein (lysozyme) and a polymer, poly(ethylene glycol) (PEG)
show that the addition of low molecular weight PEG stabilizes the mixture
whereas high molecular weight PEG was destabilizing. We demonstrate that this
behavior is inconsistent with an entropic depletion interaction between
lysozyme and PEG and suggest that an energetic attraction between lysozyme and
PEG is responsible. In order to independently characterize the lysozyme/PEG
interactions, light scattering experiments on the same mixtures were performed
to measure second and third virial coefficients. These measurements indicate
that PEG induces repulsion between lysozyme molecules, contrary to the
depletion prediction. Furthermore, it is shown that third virial terms must be
included in the mixture's free energy in order to qualitatively capture our
cloud point and light scattering data. The light scattering results were
consistent with the cloud point measurements and indicate that attractions do
exist between lysozyme and PEG.Comment: 5 pages, 2 figures, 1 tabl
Resonant Processes in a Frozen Gas
We present a theory of resonant processes in a frozen gas of atoms
interacting via dipole-dipole potentials that vary as , where is
the interatomic separation. We supply an exact result for a single atom in a
given state interacting resonantly with a random gas of atoms in a different
state. The time development of the transition process is calculated both on-
and off-resonance, and the linewidth with respect to detuning is obtained as a
function of time . We introduce a random spin Hamiltonian to model a dense
system of resonators and show how it reduces to the previous model in the limit
of a sparse system. We derive approximate equations for the average effective
spin, and we use them to model the behavior seen in the experiments of Anderson
et al. and Lowell et al. The approach to equilibrium is found to be
proportional to ), where the constant is explicitly related to the system's parameters.Comment: 30 pages, 6 figure
ERTS computer compatible tape data processing and analysis
There are no author-identified significant results in this report
Magnetic vortex-antivortex crystals generated by spin-polarized current
We study vortex pattern formation in thin ferromagnetic films under the
action of strong spin-polarized currents. Considering the currents which are
polarized along the normal of the film plane, we determine the critical current
above which the film goes to a saturated state with all magnetic moments being
perpendicular to the film plane. We show that stable square vortex-antivortex
superlattices (\emph{vortex crystals}) appears slightly below the critical
current. The melting of the vortex crystal occurs with current further
decreasing. A mechanism of current-induced periodic vortex-antivortex lattice
formation is proposed. Micromagnetic simulations confirm our analytical results
with a high accuracy.Comment: 12 pages, 11 figure
- …