1,265 research outputs found
The influence of increased pCO2 on the calcification of Mytilus edulis
One of the most important and abundant calcifying organisms in several marine ecosystems is the blue mussel, Mytilus edulis. It has a wide geographic distribution (Gosling 1992 Developm. Aquacult. Fish. Sci. 25, 1-20) and tolerates a broad range of environmental conditions (Seed and Suchanek 1992 Developm. Aquacult. Fish. Sci. 25, 87-170). Blue mussel beds are also common features in the Kiel
Fjord (Baltic Sea), a habitat dominated by low salinity (10-20 PSU), low alkalinity (1900-2150 μmol kg-1), low pH (minimum values < 7.5) and high pCO2 (maximum value of 2340 ppm). The resulting calcium carbonate saturation state (min. values: Ωarag = 0.34 and Ωcalc = 0.58) is significantly lower than in the open ocean (Thomsen et al. submitted). Therefore, pCO2 in Kiel Fjord during summer is already higher than what is predicted for the future (e.g., Caldeira and Wickett 2003 Nature 425, 365). Additionally, Meier (2006 Clim. Dyn. 27, 39-68) projected an increase of temperature (2.6 to 5.0 °C) in the next 100 years for the Baltic Sea. To contribute to the understanding of the ability of calcifying organisms to live under ocean
acidification conditions and of biomineralization mechanisms, M. edulis from this naturally CO2-enriched habitat were cultured in a flow-through system. Experiments were conducted using CO2 concentrations ranging from 380 ppm to 4000 ppm and temperatures ranging from 5° to 25°C. At the end of the experiments, hemolymph and extrapallial fluid (EPF) were taken and analyzed for pH, pCO2, bicarbonate and elemental ratios. Fluids showed decreased pH and increased CO2 with increasing water pCO2. Elemental ratios (Mg/Ca and Sr/Ca) in the fluids did not show pCO2 or
temperature-related systematic changes.
Furthermore, boron isotopes ([Delta]11B), used in isotope geochemistry as a pH proxy, were investigated by LA-MC-ICP-MS in shell portions precipitated during the experimental treatment. We observed high [Delta]11B variability between different individuals, but also within single shells. Average [Delta]11B values showed a weak positive correlation with pH. When comparing our results to published studies, boron isotopes appeared to represent internal pH conditions (EPF) instead of ambient water
pH (Kasemann et al. 2009 Chem. Geol. 260, 138-147; Reynaud et al. 2004 Coral Reefs 23, 539-546; Sanyal et al. 2000 Geochim. Cosmochim. Acta 64, 1551-1555)
Dynamics of bad-cavity enhanced interaction with cold Sr atoms for laser stabilization
Hybrid systems of cold atoms and optical cavities are promising systems for
increasing the stability of laser oscillators used in quantum metrology and
atomic clocks. In this paper we map out the atom-cavity dynamics in such a
system and demonstrate limitations as well as robustness of the approach. We
investigate the phase response of an ensemble of cold strontium-88 atoms inside
an optical cavity for use as an error signal in laser frequency stabilization.
With this system we realize a regime where the high atomic phase-shift limits
the dynamical locking range. The limitation is caused by the cavity transfer
function relating input field to output field. However, the cavity dynamics is
shown to have only little influence on the prospects for laser stabilization
making the system robust towards cavity fluctuations and ideal for the
improvement of future narrow linewidth lasers.Comment: 10 pages, 7 figure
Transgenic "knock-out" mice used in the study of the immunology of infectious diseases.
No abstract availabl
Lasing on a narrow transition in a cold thermal strontium ensemble
Highly stable laser sources based on narrow atomic transitions provide a
promising platform for direct generation of stable and accurate optical
frequencies. Here we investigate a simple system operating in the
high-temperature regime of cold atoms. The interaction between a thermal
ensemble of Sr at mK temperatures and a medium-finesse cavity produces
strong collective coupling and facilitates high atomic coherence which causes
lasing on the dipole forbidden SP transition. We
experimentally and theoretically characterize the lasing threshold and
evolution of such a system, and investigate decoherence effects in an
unconfined ensemble. We model the system using a Tavis-Cummings model, and
characterize velocity-dependent dynamics of the atoms as well as the dependency
on the cavity-detuning.Comment: 9 pages, 7 figure
Non-linear Spectroscopy of Sr Atoms in an Optical Cavity for Laser Stabilization
We study the non-linear interaction of a cold sample of strontium-88 atoms
coupled to a single mode of a low finesse optical cavity in the so-called bad
cavity limit and investigate the implications for applications to laser
stabilization. The atoms are probed on the weak inter-combination line \lvert
5s^{2} \, ^1 \textrm{S}_0 \rangle \,-\, \lvert 5s5p \, ^3 \textrm{P}_1 \rangle
at 689 nm in a strongly saturated regime. Our measured observables include the
atomic induced phase shift and absorption of the light field transmitted
through the cavity represented by the complex cavity transmission coefficient.
We demonstrate high signal-to-noise-ratio measurements of both quadratures -
the cavity transmitted phase and absorption - by employing FM spectroscopy
(NICE-OHMS). We also show that when FM spectroscopy is employed in connection
with a cavity locked to the probe light, observables are substantially modified
compared to the free space situation where no cavity is present. Furthermore,
the non-linear dynamics of the phase dispersion slope is experimentally
investigated and the optimal conditions for laser stabilization are
established. Our experimental results are compared to state-of-the-art cavity
QED theoretical calculations.Comment: 7 pages, 4 figure
Observation of Motion Dependent Nonlinear Dispersion with Narrow Linewidth Atoms in an Optical Cavity
As an alternative to state-of-the-art laser frequency stabilisation using
ultra-stable cavities, it has been proposed to exploit the non-linear effects
from coupling of atoms with a narrow transition to an optical cavity. Here we
have constructed such a system and observed non-linear phase shifts of a narrow
optical line by strong coupling of a sample of strontium-88 atoms to an optical
cavity. The sample temperature of a few mK provides a domain where the Doppler
energy scale is several orders of magnitude larger than the narrow linewidth of
the optical transition. This makes the system sensitive to velocity dependent
multi-photon scattering events (Dopplerons) that affect the cavity field
transmission and phase. By varying the number of atoms and the intra-cavity
power we systematically study this non-linear phase signature which displays
roughly the same features as for much lower temperature samples. This
demonstration in a relatively simple system opens new possibilities for
alternative routes to laser stabilization at the sub 100 mHz level and
superradiant laser sources involving narrow line atoms. The understanding of
relevant motional effects obtained here has direct implications for other
atomic clocks when used in relation with ultranarrow clock transitions.Comment: 9 pages (including 4 pages of Supplemental Information), 6 figures.
Updated to correspond to the published versio
Deliverable D5.6 Final LinkedTV End-to-End Platform
This Deliverable describes the final LinkedTV End-to-End Platform, which integrates a whole workflow from video ingestion over video analysis, annotated media fragment generation, content enrichment to personalized playout by a dedicated media player
- …