42,890 research outputs found
Self-gravitating astrophysical mass with singular central density vibrating in fundamental mode
The fluid-dynamical model of a self-gravitating mass of viscous liquid with
singular density at the center vibrating in fundamental mode is considered in
juxtaposition with that for Kelvin fundamental mode in a homogeneous heavy mass
of incompressible inviscid liquid. Particular attention is given to the
difference between spectral formulae for the frequency and lifetime of -mode
in the singular and homogeneous models. The newly obtained results are
discussed in the context of theoretical asteroseismology of pre-white dwarf
stage of red giants and stellar cocoons -- spherical gas-dust clouds with dense
star-forming core at the center.Comment: Mod. Phys. Lett. A, Vol. 24, No. 40 (2009) pp. 3257-327
Recommended from our members
Cnemidophorus hyperythrus
Number of Pages: 6Integrative BiologyGeological Science
Kerr-Schild metrics revisited I. The ground state
The Kerr-Schild pencil of metrics g_{ab}+\La l_al_b is investigated in the
generic case when it maps an arbitrary vacuum space-time with metric
to a vacuum space-time. The theorem is proved that this generic case, with the
field shearing, does not contain the shear-free subclass as a smooth limit.
It is shown that one of the K\'ota-Perj\'es metrics is a solution in the
shearing class.Comment: 16 page
Orientation filtering by growth-velocity competition in zone-melting recrystallization of silicon on SiO_2
We describe a method of controlling the in-plane directions of grains in (100)-textured silicon films produced by zone-melting recrystallization over amorphous SiO2. Grains having in-plane orientation within a narrow range are able to grow through an orientation filter consisting of a pattern of crystallization barriers, while grains having other orientations are occluded. The results of experiments using an orientation filter, and the parameters which optimize filter performance, are reported
Relativistic Winds from Compact Gamma-ray Sources: I. Radiative Acceleration in the Klein-Nishina Regime
We consider the radiative acceleration to relativistic bulk velocities of a
cold, optically thin plasma which is exposed to an external source of
gamma-rays. The flow is driven by radiative momentum input to the gas, the
accelerating force being due to Compton scattering in the relativistic
Klein-Nishina limit. The bulk Lorentz factor of the plasma, Gamma, derived as a
function of distance from the radiating source, is compared with the
corresponding result in the Thomson limit. Depending on the geometry and
spectrum of the radiation field, we find that particles are accelerated to the
asymptotic Lorentz factor at infinity much more rapidly in the relativistic
regime; and the radiation drag is reduced as blueshifted, aberrated photons
experience a decreased relativistic cross section and scatter preferentially in
the forward direction. The random energy imparted to the plasma by gamma-rays
can be converted into bulk motion if the hot particles execute many Larmor
orbits before cooling. This `Compton afterburn' may be a supplementary source
of momentum if energetic leptons are injected by pair creation, but can be
neglected in the case of pure Klein-Nishina scattering. Compton drag by
side-scattered radiation is shown to be more important in limiting the bulk
Lorentz factor than the finite inertia of the accelerating medium. The
processes discussed here may be relevant to a variety of astrophysical
situations where luminous compact sources of hard X- and gamma-ray photons are
observed, including active galactic nuclei, galactic black hole candidates, and
gamma-ray bursts.Comment: LateX, 20 pages, 5 figures, revised version accepted for publication
in the Ap
Constraints on z~10 Galaxies from the Deepest HST NICMOS Fields
We use all available fields with deep NICMOS imaging to search for J dropouts
(H<28) at z~10. Our primary data set for this search were the two J+H NICMOS
parallel fields taken with the ACS HUDF. The 5 sigma limiting mags were 28.6 in
J and 28.5 in H. Several shallower fields were also used: J+H NICMOS frames
available over the HDF North, the HDF South NICMOS parallel, and the ACS HUDF.
The primary selection criterion was (J-H)>1.8. 11 such sources were found in
all search fields using this criterion. 8 of these were clearly ruled out as
credible z~10 sources, either as a result of detections (>2 sigma) blueward of
J or their colors redward of the break (H-K~1.5). The nature of the 3 remaining
sources could not be determined from the data. The number appears consistent
with the expected contamination from low-z interlopers. Analysis of the stacked
images for the 3 candidates also suggests contamination. Regardless of their
true redshifts, the actual number of z~10 sources must be <=3. To assess the
significance of these results, two lower redshift samples (a z~3.8 B-dropout
and z~6 i-dropout sample) were projected to z~8-12 using a (1+z)^{-1} size
scaling. They were added to the image frames, and the selection repeated,
giving 15.6 and 4.8 J-dropouts, respectively. This suggests that to the limit
of this probe (0.3 L*) there has been evolution from z~3.8 and possibly from
z~6. This is consistent with the strong evolution already noted at z~6 and
z~7.5 relative to z~3-4. Even assuming that 3 sources from this probe are at
z~10, the rest-frame continuum UV (~1500 A) luminosity density at z~10
(integrated down to 0.3 L*) is just 0.19_{-0.09}^{+0.13}x that at z~3.8 (or
0.19_{-0.10}^{+0.15}x including cosmic variance). However, if none of our
sources is at z~10, this ratio has a 1 sigma upper limit of 0.07. (abridged)Comment: 13 pages, 3 figures, 2 tables, accepted for publication in the
Astrophysical Journal Letter
"Re-educating" tumor-associated macrophages by targeting NF-kappaB
The nuclear factor kappaB (NF-kappaB) signaling pathway is important in cancer-related inflammation and malignant progression. Here, we describe a new role for NF-kappaB in cancer in maintaining the immunosuppressive phenotype of tumor-associated macrophages (TAMs). We show that macrophages are polarized via interleukin (IL)-1R and MyD88 to an immunosuppressive "alternative" phenotype that requires IkappaB kinase beta-mediated NF-kappaB activation. When NF-kappaB signaling is inhibited specifically in TAMs, they become cytotoxic to tumor cells and switch to a "classically" activated phenotype; IL-12(high), major histocompatibility complex II(high), but IL-10(low) and arginase-1(low). Targeting NF-kappaB signaling in TAMs also promotes regression of advanced tumors in vivo by induction of macrophage tumoricidal activity and activation of antitumor activity through IL-12-dependent NK cell recruitment. We provide a rationale for manipulating the phenotype of the abundant macrophage population already located within the tumor microenvironment; the potential to "re-educate" the tumor-promoting macrophage population may prove an effective and novel therapeutic approach for cancer that complements existing therapies
A non-LTE abundance analysis of the post-AGB star ROA 5701
An analysis of high-resolution Anglo-Australian Telescope (AAT)/ University
College London Echelle Spectrograph (UCLES) optical spectra for the ultraviolet
(UV)-bright star ROA 5701 in the globular cluster omega Cen (NGC 5139) is
performed, using non-local thermodynamic equilibrium (non-LTE) model
atmospheres to estimate stellar atmospheric parameters and chemical
composition. Abundances are derived for C, N, O, Mg, Si and S, and compared
with those found previously by Moehler et al. We find a general metal
underabundance relative to young B-type stars, consistent with the average
metallicity of the cluster. Our results indicate that ROA 5701 has not
undergone a gas-dust separation scenario as previously suggested. However, its
abundance pattern does imply that ROA 5701 has evolved off the AGB prior to the
onset of the third dredge-up.Comment: 9 pages, 2 figures. Accepted for publication in MNRAS (Online Early
Alternative Data Reduction Procedures for UVES: Wavelength Calibration and Spectrum Addition
This paper addresses alternative procedures to the ESO supplied pipeline
procedures for the reduction of UVES spectra of two quasar spectra to determine
the value of the fundamental constant mu = Mp/Me at early times in the
universe. The procedures utilize intermediate product images and spectra
produced by the pipeline with alternative wavelength calibration and spectrum
addition methods. Spectroscopic studies that require extreme wavelength
precision need customized wavelength calibration procedures beyond that usually
supplied by the standard data reduction pipelines. An example of such studies
is the measurement of the values of the fundamental constants at early times in
the universe. This article describes a wavelength calibration procedure for the
UV-Visual Echelle Spectrometer on the Very Large Telescope, however, it can be
extended to other spectrometers as well. The procedure described here provides
relative wavelength precision of better than 3E-7 for the long-slit
Thorium-Argon calibration lamp exposures. The gain in precision over the
pipeline wavelength calibration is almost entirely due to a more exclusive
selection of Th/Ar calibration lines.Comment: Accepted for publication in New Astronom
- …