1,592 research outputs found

    Predictions for CO emission and the CO-to-H2 conversion factor in galaxy simulations with non-equilibrium chemistry

    Get PDF
    Our ability to trace the star-forming molecular gas is important to our understanding of the Universe. We can trace this gas using CO emission, converting the observed CO intensity into the H2 gas mass of the region using the CO-to-H2 conversion factor (⁠_CO⁠). In this paper, we use simulations to study the conversion factor and the molecular gas within galaxies. We analysed a suite of simulations of isolated disc galaxies, ranging from dwarfs to Milky Way-mass galaxies, that were run using the FIRE-2 subgrid models coupled to the CHIMES non-equilibrium chemistry solver. We use the non-equilibrium abundances from the simulations, and we also compare to results using abundances assuming equilibrium, which we calculate from the simulation in post-processing. Our non-equilibrium simulations are able to reproduce the relation between CO and H2 column densities, and the relation between _CO and metallicity, seen within observations of the Milky Way. We also compare to the xCOLD GASS survey, and find agreement with their data to our predicted CO luminosities at fixed star formation rate. We also find the multivariate function used by xCOLD GASS overpredicts the H2 mass for our simulations, motivating us to suggest an alternative multivariate function of our fitting, though we caution that this fitting is uncertain due to the limited range of galaxy conditions covered by our simulations. We also find that the non-equilibrium chemistry has little effect on the conversion factor (<5%) for our high-mass galaxies, though still affects the H2 mass and _CO by ≈25%

    Two highly divergent alcohol dehydrogenases of melon exhibit fruit ripening-specific expression and distinct biochemical characteristics

    Get PDF
    Alcohol dehydrogenases (ADH) participate in the biosynthetic pathway of aroma volatiles in fruit by interconverting aldehydes to alcohols and providing substrates for the formation of esters. Two highly divergent ADH genes (15% identity at the amino acid level) of Cantaloupe Charentais melon (Cucumis melo var. Cantalupensis) have been isolated. Cm-ADH1 belongs to the medium-chain zinc-binding type of ADHs and is highly similar to all ADH genes expressed in fruit isolated so far. Cm-ADH2 belongs to the short-chain type of ADHs. The two encoded proteins are enzymatically active upon expression in yeast. Cm-ADH1 has strong preference for NAPDH as a co-factor, whereas Cm-ADH2 preferentially uses NADH. Both Cm-ADH proteins are much more active as reductases with Kms 10–20 times lower for the conversion of aldehydes to alcohols than for the dehydrogenation of alcohols to aldehydes. They both show strong preference for aliphatic aldehydes but Cm-ADH1 is capable of reducing branched aldehydes such as 3-methylbutyraldehyde, whereas Cm-ADH2 cannot. Both Cm-ADH genes are expressed specifically in fruit and up-regulated during ripening. Gene expression as well as total ADH activity are strongly inhibited in antisense ACC oxidase melons and in melon fruit treated with the ethylene antagonist 1-methylcyclopropene (1-MCP), indicating a positive regulation by ethylene. These data suggest that each of the Cm-ADH protein plays a specific role in the regulation of aroma biosynthesis in melon fruit

    Submicron Structures Fabrication and Research

    Get PDF
    Contains reports on thirteen research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)U.S. Navy - Office of Naval Research (Contract N00014-79-C-0908)National Science Foundation (Grant ECS82-05701)I.B.M. (PO No. 90305-QPSA-559)U.S. Department of Energy (Contract DE-AC02-82-ER13019)Lawrence Livermore Laboratory (Contract 2069209

    CYP17 5'-UTR MspA1 polymorphism and the risk of premenopausal breast cancer in a German population-based case–control study

    Get PDF
    INTRODUCTION: Studies on the association between the cytochrome P450c17α gene (CYP17) 5'-untranslated region MspA1 genetic polymorphism and breast cancer risk have yielded inconsistent results. Higher levels of estrogen have been reported among young nulliparous women with the A2 allele. Therefore we assessed the impact of CYP17 genotypes on the risk of premenopausal breast cancer, with emphasis on parity. METHODS: We used data from a population-based case–control study of women aged below 51 years conducted from 1992 to 1995 in Germany. Analyses were restricted to clearly premenopausal women with complete information on CYP17 and encompassed 527 case subjects and 904 controls, 99.5% of whom were of European descent. The MspA1 polymorphism was analyzed using PCR-RFLP (PCR–restriction fragment length polymorphism) assay. RESULTS: The frequencies of the variant allele among the cases and controls were 43% and 41%, respectively. Overall, CYP17 A1/A2 and A2/A2 genotypes compared with the A1/A1 genotype were not associated with breast cancer, with adjusted odds ratios (ORs) of 1.04 and 1.23, respectively. Among nulliparous women, however, breast cancer risk was elevated for the A1/A2 (OR = 1.31; 95% confidence interval (CI) 0.74 to 2.32) and the A2/A2 genotype (OR = 2.12; 95% CI 1.04 to 4.32) compared with the A1/A1 genotype, with a trend towards increasing risk associated with number of A2 alleles (P = 0.04). Otherwise, the CYP17 polymorphism was found neither to be an effect modifier of breast cancer risks nor to be associated with stage of disease. CONCLUSION: Our results do not indicate a major influence of CYP17 MspA1 polymorphism on the risk of premenopausal breast cancer, but suggest that it may have an impact on breast cancer risk among nulliparous women. The finding, however, needs to be confirmed in further studies

    Submicron Structures Technology and Research

    Get PDF
    Contains reports on fourteen research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)U.S. Navy - Office of Naval Research (Contract N00014-79-C-0908)National Science Foundation (Grant ECS82-05701)Semiconductor Research Corporation (Grant 83-01-033)U.S. Department of Energy (Contract DE-ACO2-82-ER-13019)Lawrence Livermore National Laboratory (Contract 2069209)National Aeronautics and Space Administration (Contract NAS5-27591)Defense Advanced Research Projects Agency (Contract N00014-79-C-0908)National Science Foundation (Grant ECS80-17705)National Aeronautics and Space Administration (Contract NGL22-009-638

    Submicron Structures Technology and Research

    Get PDF
    Contains reports on thirteen research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)U.S. Navy - Office of Naval Research (Contract N00014-79-C-0908)National Science Foundation (Contract ECS82-05701)U.S. Department of Energy (Contract DE-ACO2-82-ER-13019)Lawrence Livermore Laboratory (Contract 2069209)National Aeronautics and Space Administration (Contract NGL-22-009-638)U.S. Navy - Office of Naval Research (Contract N00014-84-K-0073)National Science Foundation (Grant ECS80-17705)National Science Foundation (Grant ENG79-09980

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr
    corecore