43 research outputs found

    Temperature shift suppression scheme for two-photon two-color rubidium vapor clocks

    Full text link
    We propose a new scheme for interrogating a warm rubidium vapor using two different clock lasers. Performance-wise, this approach is distinctly different from the recently proposed two-color two-photon rubidium clocks as our scheme does not trade off the AC Stark suppression against an increased sensitivity to the cell-temperature/pressure. Instead, our approach compensates all, the AC-Stark shift and the temperature & pressure-induced frequency shifts. The proposed scheme also makes use of the modulation transfer technique, which enables a two-orders of magnitude increase in the signal-to-noise ratio compared to traditional clocks that rely on fluorescence measurements

    Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth

    Full text link
    We present a high bandwidth piezoelectric-actuated mirror for length stabilization of an optical cavity. The actuator displays a transfer function with a flat amplitude response and greater than 135∘^\circ phase margin up to 200 kHz, allowing a 180 kHz unity gain frequency to be achieved in a closed servo loop. To the best of our knowledge, this actuator has achieved the largest servo bandwidth for a piezoelectric transducer (PZT). The actuator should be very useful in a wide variety of applications requiring precision control of optical lengths, including laser frequency stabilization, optical interferometers, and optical communications

    VUV frequency combs from below-threshold harmonics

    Get PDF
    Recent demonstrations of high-harmonic generation (HHG) at very high repetition frequencies (~100 MHz) may allow for the revolutionary transfer of frequency combs to the vacuum ultraviolet (VUV). This advance necessitates unifying optical frequency comb technology with strong-field atomic physics. While strong-field studies of HHG have often focused on above-threshold harmonic generation (photon energy above the ionization potential), for VUV frequency combs an understanding of below-threshold harmonic orders and their generation process is crucial. Here we present a new and quantitative study of the harmonics 7-13 generated below and near the ionization threshold in xenon gas. We show multiple generation pathways for these harmonics that are manifested as on-axis interference in the harmonic yield. This discovery provides a new understanding of the strong-field, below-threshold dynamics under the influence of an atomic potential and allows us to quantitatively assess the achievable coherence of a VUV frequency comb generated through below threshold harmonics. We find that under reasonable experimental conditions temporal coherence is maintained. As evidence we present the first explicit VUV frequency comb structure beyond the 3rd harmonic.Comment: 16 pages, 4 figures, 1 tabl

    Nonlinear Femtosecond Pulse Reshaping in Waveguide Arrays

    Full text link
    We observe nonlinear pulse reshaping of femtosecond pulses in a waveguide array due to coupling between waveguides. Amplified pulses from a mode-locked fiber laser are coupled to an AlGaAs core waveguide array structure. The observed power-dependent pulse reshaping agrees with theory, including shortening of the pulse in the central waveguide
    corecore