169 research outputs found

    Ganglioside GM3 Is Antiangiogenic in Malignant Brain Cancer

    Get PDF
    Progression of malignant brain tumors is dependent upon vascularity and is associated with altered ganglioside composition and distribution. Evidence is reviewed showing that the simple monosialoganglioside, GM3, possesses powerful antiangiogenic action against the highly vascularized CT-2A mouse astrocytoma, which primarily expresses complex gangliosides. Brain tumors expressing high levels of GM3 are generally less vascularized and grow slower than tumors that express low levels of GM3. GM3 inhibits angiogenesis through autocrine and paracrine effects on vascular endothelial growth factor (VEGF) and associated receptors. GM3 should be a clinically useful compound for managing brain tumor angiogenesis

    Targeting energy metabolism in brain cancer: review and hypothesis

    Get PDF
    Malignant brain tumors are a significant health problem in children and adults and are often unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration, malignant brain cancer is potentially manageable through changes in metabolic environment. A radically different approach to brain cancer management is proposed that combines metabolic control analysis with the evolutionarily conserved capacity of normal cells to survive extreme shifts in physiological environment. In contrast to malignant brain tumors that are largely dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (β-hydroxybutyrate) for energy in vivo when glucose levels are reduced. The bioenergetic transition from glucose to ketone bodies metabolically targets brain tumors through integrated anti-inflammatory, anti-angiogenic, and pro-apoptotic mechanisms. The approach focuses more on the genomic flexibility of normal cells than on the genomic defects of tumor cells and is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with dietary energy restriction and the ketogenic diet

    Cancer as a metabolic disease

    Get PDF
    Emerging evidence indicates that impaired cellular energy metabolism is the defining characteristic of nearly all cancers regardless of cellular or tissue origin. In contrast to normal cells, which derive most of their usable energy from oxidative phosphorylation, most cancer cells become heavily dependent on substrate level phosphorylation to meet energy demands. Evidence is reviewed supporting a general hypothesis that genomic instability and essentially all hallmarks of cancer, including aerobic glycolysis (Warburg effect), can be linked to impaired mitochondrial function and energy metabolism. A view of cancer as primarily a metabolic disease will impact approaches to cancer management and prevention

    Caloric restriction in C57BL/6J mice mimics therapeutic fasting in humans

    Get PDF
    BACKGROUND: Caloric restriction (CR) has long been recognized as a dietary therapy that improves health and increases longevity. Little is known about the persistent effects of CR on plasma biomarkers (glucose, ketone bodies, and lipids) following re-feeding in mice. It is also unclear how these biomarker changes in calorically restricted mice relate to those observed previously in calorically restricted humans. RESULTS: Three groups of individually housed adult female C57BL/6J (B6) mice (n = 4/group) were fed a standard rodent chow diet either: (1) unrestricted (UR); (2) restricted for three weeks to reduce body weight by approximately 15–20% (R); or (3) restricted for three weeks and then re-fed unrestricted (ad libitum) for an additional three weeks (R-RF). Body weight and food intake were measured throughout the study, while plasma lipids and levels of glucose and ketone bodies (β-hydroxybutyrate) were measured at the termination of the study. Plasma glucose, phosphatidylcholine, cholesterol, and triglycerides were significantly lower in the R mice than in the UR mice. In contrast, plasma fatty acids and β-hydroxybutyrate were significantly higher in the R mice than in the UR mice. CR had no effect on plasma phosphatidylinositol levels. While body weight and plasma lipids of the R-RF mice returned to unrestricted levels upon re-feeding, food intake and glucose levels remained significantly lower than those prior to the initiation of CR. CONCLUSION: CR establishes a new homeostatic state in B6 mice that persists for at least three weeks following ad libitum re-feeding. Moreover, the plasma biomarker changes observed in B6 mice during CR mimic those reported in humans on very low calorie diets or during therapeutic fasting

    Functional and Therapeutic Implications of Mitochondrial Network and Mitochondria-Associated Membranes: The Glioma’s Case

    Get PDF
    Even today, despite the surgery, radiotherapy, and chemotherapy, gliomas prognosis is still poor. There is a great need to develop new therapies. The understanding of the structural and functional characteristics of mitochondrial network (MN) and mitochondria-associated membranes (MAM) in gliomas is essential for the design of future therapeutic strategies. A huge range of ultrastructural findings is observed in MN and MAM in the human gliomas. These findings imply that a majority of glioma cells are incompetent to produce an adequate amount of energy by means of oxidative phosphorylation and compensatory increases in glycolytic ATP production. Regarding MAM, a “MAM-rich” cell (well-differentiated glioma cells) and “MAM-deficient” cells (glioma like-stem cells) exist. The quantity of MAM could be linked to the functional or metabolic state of the different glioma cells. MAM-resident mTORC2 is a major regulator tumor growth and drug resistance. If sufficient nutrients are present, glioblastoma cells maintain mTORC2 signaling to drive cell proliferation and survival. Consequently, the replacement of fermentable fuels like glucose with non-fermentable fuels like ketone bodies becomes a logical approach. The vision must be targeting the cellular signaling pathways and metabolic reprogramming. Whatever the modality, a holistic and feasible approach must be developed

    Intraventricular Sialidase Administration Enhances GM1 Ganglioside Expression and Is Partially Neuroprotective in a Mouse Model of Parkinson\u27s Disease.

    Get PDF
    BACKGROUND: Preclinical and clinical studies have previously shown that systemic administration of GM1 ganglioside has neuroprotective and neurorestorative properties in Parkinson\u27s disease (PD) models and in PD patients. However, the clinical development of GM1 for PD has been hampered by its animal origin (GM1 used in previous studies was extracted from bovine brains), limited bioavailability, and limited blood brain barrier penetrance following systemic administration. OBJECTIVE: To assess an alternative therapeutic approach to systemic administration of brain-derived GM1 to enhance GM1 levels in the brain via enzymatic conversion of polysialogangliosides into GM1 and to assess the neuroprotective potential of this approach. METHODS: We used sialidase from Vibrio cholerae (VCS) to convert GD1a, GD1b and GT1b gangliosides to GM1. VCS was infused by osmotic minipump into the dorsal third ventricle in mice over a 4-week period. After the first week of infusion, animals received MPTP injections (20 mg/kg, s.c., twice daily, 4 hours apart, for 5 consecutive days) and were euthanized 2 weeks after the last injection. RESULTS: VCS infusion resulted in the expected change in ganglioside expression with a significant increase in GM1 levels. VCS-treated animals showed significant sparing of striatal dopamine (DA) levels and substantia nigra DA neurons following MPTP administration, with the extent of sparing of DA neurons similar to that achieved with systemic GM1 administration. CONCLUSION: The results suggest that enzymatic conversion of polysialogangliosides to GM1 may be a viable treatment strategy for increasing GM1 levels in the brain and exerting a neuroprotective effect on the damaged nigrostriatal DA system

    Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>AMP-activated protein kinase (AMPK) is a known physiological cellular energy sensor and becomes phosphorylated at Thr-172 in response to changes in cellular ATP levels. Activated AMPK acts as either an inducer or suppressor of apoptosis depending on the severity of energy stress and the presence or absence of certain functional tumor suppressor genes.</p> <p>Results</p> <p>Here we show that energy stress differentially affects AMPK phosphorylation and cell-death in brain tumor tissue and in tissue from contra-lateral normal brain. We compared TSC2 deficient CT-2A mouse astrocytoma cells with syngeneic normal astrocytes that were grown under identical condition <it>in vitro</it>. Energy stress induced by glucose withdrawal or addition of 2-deoxyglucose caused more ATP depletion, AMPK phosphorylation and apoptosis in CT-2A cells than in the normal astrocytes. Under normal energy conditions pharmacological stimulation of AMPK caused apoptosis in CT-2A cells but not in astrocytes. TSC2 siRNA treated astrocytes are hypersensitive to apoptosis induced by energy stress compared to control cells. AMPK phosphorylation and apoptosis were also greater in the CT-2A tumor tissue than in the normal brain tissue following implementation of dietary energy restriction. Inefficient mTOR and TSC2 signaling, downstream of AMPK, is responsible for CT-2A cell-death, while functional LKB1 may protect normal brain cells under energy stress.</p> <p>Conclusion</p> <p>Together these data demonstrates that AMPK phosphorylation induces apoptosis in mouse astrocytoma but may protect normal brain cells from apoptosis under similar energy stress condition. Therefore, using activator of AMPK along with glycolysis inhibitor could be a potential therapeutic approach for TSC2 deficient human malignant astrocytoma.</p

    Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle.

    Get PDF
    Background Aberrant metabolism is recognized as a hallmark of cancer, a pillar necessary for cellular proliferation. Regarding bioenergetics (ATP generation), most cancers display a preference not only toward aerobic glycolysis (“Warburg effect”) and glutaminolysis (mitochondrial substrate level-phosphorylation) but also toward other metabolites such as lactate, pyruvate, and fat-derived sources. These secondary metabolites can assist in proliferation but cannot fully cover ATP demands. Scope of review The concept of a static metabolic profile is challenged by instances of heterogeneity and flexibility to meet fuel/anaplerotic demands. Although metabolic therapies are a promising tool to improve therapeutic outcomes, either via pharmacological targets or press-pulse interventions, metabolic plasticity is rarely considered. Lack of bioenergetic analysis in vitro and patient-derived models is hindering translational potential. Here, we review the bioenergetics of cancer and propose a simple analysis of major metabolic pathways, encompassing both affordable and advanced techniques. A comprehensive compendium of Seahorse XF bioenergetic measurements is presented for the first time. Major conclusions Standardization of principal readouts might help researchers to collect a complete metabolic picture of cancer using the most appropriate methods depending on the sample of interest.post-print3250 K

    Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: role of glucose and ketone bodies

    Get PDF
    BACKGROUND: The high fat, low carbohydrate ketogenic diet (KD) was developed as an alternative to fasting for seizure management. While the mechanisms by which fasting and the KD inhibit seizures remain speculative, alterations in brain energy metabolism are likely involved. We previously showed that caloric restriction (CR) inhibits seizure susceptibility by reducing blood glucose in the epileptic EL mouse, a natural model for human multifactorial idiopathic epilepsy. In this study, we compared the antiepileptic and anticonvulsant efficacy of the KD with that of CR in adult EL mice with active epilepsy. EL mice that experienced at least 15 recurrent complex partial seizures were fed either a standard diet unrestricted (SD-UR) or restricted (SD-R), and either a KD unrestricted (KD-UR) or restricted (KD-R). All mice were fasted for 14 hrs prior to diet initiation. A new experimental design was used where each mouse in the diet-restricted groups served as its own control to achieve a 20–23% body weight reduction. Seizure susceptibility, body weights, and the levels of plasma glucose and β-hydroxybutyrate were measured once/week over a nine-week treatment period. RESULTS: Body weights and blood glucose levels remained high over the testing period in the SD-UR and the KD-UR groups, but were significantly (p < 0.001) reduced in the SD-R and KD-R groups. Plasma β-hydroxybutyrate levels were significantly (p < 0.001) increased in the SD-R and KD-R groups compared to their respective UR groups. Seizure susceptibility remained high in both UR-fed groups throughout the study, but was significantly reduced after three weeks in both R-fed groups. CONCLUSIONS: The results indicate that seizure susceptibility in EL mice is dependent on plasma glucose levels and that seizure control is more associated with the amount than with the origin of dietary calories. Also, CR underlies the antiepileptic and anticonvulsant action of the KD in EL mice. A transition from glucose to ketone bodies for energy is predicted to manage EL epileptic seizures through multiple integrated changes of inhibitory and excitatory neural systems

    Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Management of glioblastoma multiforme (GBM) has been difficult using standard therapy (radiation with temozolomide chemotherapy). The ketogenic diet is used commonly to treat refractory epilepsy in children and, when administered in restricted amounts, can also target energy metabolism in brain tumors. We report the case of a 65-year-old woman who presented with progressive memory loss, chronic headaches, nausea, and a right hemisphere multi-centric tumor seen with magnetic resonance imaging (MRI). Following incomplete surgical resection, the patient was diagnosed with glioblastoma multiforme expressing hypermethylation of the <it>MGMT </it>gene promoter.</p> <p>Methods</p> <p>Prior to initiation of the standard therapy, the patient conducted water-only therapeutic fasting and a restricted 4:1 (fat: carbohydrate + protein) ketogenic diet that delivered about 600 kcal/day. The patient also received the restricted ketogenic diet concomitantly during the standard treatment period. The diet was supplemented with vitamins and minerals. Steroid medication (dexamethasone) was removed during the course of the treatment. The patient was followed using MRI and positron emission tomography with fluoro-deoxy-glucose (FDG-PET).</p> <p>Results</p> <p>After two months treatment, the patient's body weight was reduced by about 20% and no discernable brain tumor tissue was detected using either FDG-PET or MRI imaging. Biomarker changes showed reduced levels of blood glucose and elevated levels of urinary ketones. MRI evidence of tumor recurrence was found 10 weeks after suspension of strict diet therapy.</p> <p>Conclusion</p> <p>This is the first report of confirmed GBM treated with standard therapy together with a restricted ketogenic diet. As rapid regression of GBM is rare in older patients following incomplete surgical resection and standard therapy alone, the response observed in this case could result in part from the action of the calorie restricted ketogenic diet. Further studies are needed to evaluate the efficacy of restricted ketogenic diets, administered alone or together with standard treatment, as a therapy for GBM and possibly other malignant brain tumors.</p
    corecore