2 research outputs found

    A Multi-State Model of the CaMKII Dodecamer Suggests a Role for Calmodulin in Maintenance of Autophosphorylation

    Get PDF
    Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) accounts for up to 2 percent of all brain protein and is essential to memory function. CaMKII activity is known to regulate dynamic shifts in the size and signaling strength of neuronal connections, a process known as synaptic plasticity. Increasingly, computational models are used to explore synaptic plasticity and the mechanisms regulating CaMKII activity. Conventional modeling approaches may exclude biophysical detail due to the impractical number of state combinations that arise when explicitly monitoring the conformational changes, ligand binding, and phosphorylation events that occur on each of the CaMKII holoenzyme’s subunits. To manage the combinatorial explosion without necessitating bias or loss in biological accuracy, we use a specialized syntax in the software MCell to create a rule-based model of a twelve-subunit CaMKII holoenzyme. Here we validate the rule-based model against previous experimental measures of CaMKII activity and investigate molecular mechanisms of CaMKII regulation. Specifically, we explore how Ca²⁺/CaM-binding may both stabilize CaMKII subunit activation and regulate maintenance of CaMKII autophosphorylation. Noting that Ca²⁺/CaM and protein phosphatases bind CaMKII at nearby or overlapping sites, we compare model scenarios in which Ca²⁺/CaM and protein phosphatase do or do not structurally exclude each other’s binding to CaMKII. Our results suggest a functional mechanism for the so-called “CaM trapping” phenomenon, wherein Ca²⁺/CaM may structurally exclude phosphatase binding and thereby prolong CaMKII autophosphorylation. We conclude that structural protection of autophosphorylated CaMKII by Ca²⁺/CaM may be an important mechanism for regulation of synaptic plasticity

    Computational reconstitution of spine calcium transients from individual proteins

    Get PDF
    We have built a stochastic model in the program MCell that simulates Ca^(2+) transients in spines from the principal molecular components believed to control Ca^(2+) entry and exit. Proteins, with their kinetic models, are located within two segments of dendrites containing 88 intact spines, centered in a fully reconstructed 6 × 6 × 5 μm^3 cube of hippocampal neuropil. Protein components include AMPA- and NMDA-type glutamate receptors, L- and R-type voltage-dependent Ca^(2+) channels, Na^+/Ca^(2+) exchangers, plasma membrane Ca^(2+) ATPases, smooth endoplasmic reticulum Ca^(2+) ATPases, immobile Ca2+ buffers, and calbindin. Kinetic models for each protein were taken from published studies of the isolated proteins in vitro. For simulation of electrical stimuli, the time course of voltage changes in the dendritic spine was generated with the desired stimulus in the program NEURON. Voltage-dependent parameters were then continuously re-adjusted during simulations in MCell to reproduce the effects of the stimulus. Nine parameters of the model were optimized within realistic experimental limits by a process that compared results of simulations to published data. We find that simulations in the optimized model reproduce the timing and amplitude of Ca^(2+) transients measured experimentally in intact neurons. Thus, we demonstrate that the characteristics of individual isolated proteins determined in vitro can accurately reproduce the dynamics of experimentally measured Ca^(2+) transients in spines. The model will provide a test bed for exploring the roles of additional proteins that regulate Ca^(2+) influx into spines and for studying the behavior of protein targets in the spine that are regulated by Ca^(2+) influx
    corecore