11 research outputs found
FragBuilder:an efficient Python library to setup quantum chemistry calculations on peptides models
We present a powerful Python library to quickly and efficiently generate realistic peptide model structures. The library makes it possible to quickly set up quantum mechanical calculations on model peptide structures. It is possible to manually specify a specific conformation of the peptide. Additionally the library also offers sampling of backbone conformations and side chain rotamer conformations from continuous distributions. The generated peptides can then be geometry optimized by the MMFF94 molecular mechanics force field via convenient functions inside the library. Finally, it is possible to output the resulting structures directly to files in a variety of useful formats, such as XYZ or PDB formats, or directly as input files for a quantum chemistry program. FragBuilder is freely available at https://github.com/jensengroup/fragbuilder/ under the terms of the BSD open source license
Bayesian inference of protein structure from chemical shift data
Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model, and a bias is introduced which might result in incorrect structures. In the inferential structure determination framework, both the unknown structure and the disagreement between experimental and back-calculated data are formulated as a joint probability distribution, thus utilizing the full information content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the simulations suggests that sampling both the structure and the uncertainties in chemical shift prediction leads more accurate structures compared to conventional methods using empirical determined weights. The Cauchy distribution, using either sampled uncertainties or predetermined weights, did, however, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction
LegoNet: Alternating Model Blocks for Medical Image Segmentation
Since the emergence of convolutional neural networks (CNNs), and later vision
transformers (ViTs), the common paradigm for model development has always been
using a set of identical block types with varying parameters/hyper-parameters.
To leverage the benefits of different architectural designs (e.g. CNNs and
ViTs), we propose to alternate structurally different types of blocks to
generate a new architecture, mimicking how Lego blocks can be assembled
together. Using two CNN-based and one SwinViT-based blocks, we investigate
three variations to the so-called LegoNet that applies the new concept of block
alternation for the segmentation task in medical imaging. We also study a new
clinical problem which has not been investigated before, namely the right
internal mammary artery (RIMA) and perivascular space segmentation from
computed tomography angiography (CTA) which has demonstrated a prognostic value
to major cardiovascular outcomes. We compare the model performance against
popular CNN and ViT architectures using two large datasets (e.g. achieving
0.749 dice similarity coefficient (DSC) on the larger dataset). We evaluate the
performance of the model on three external testing cohorts as well, where an
expert clinician made corrections to the model segmented results (DSC>0.90 for
the three cohorts). To assess our proposed model for suitability in clinical
use, we perform intra- and inter-observer variability analysis. Finally, we
investigate a joint self-supervised learning approach to assess its impact on
model performance. The code and the pretrained model weights will be available
upon acceptance.Comment: 12 pages, 5 figures, 4 table
Cost-effectiveness of a novel AI technology to quantify coronary inflammation and cardiovascular risk in patients undergoing routine Coronary Computed Tomography Angiography.
AIMS: Coronary Computed Tomography Angiography (CCTA) is a first line investigation for chest pain in patients with suspected obstructive coronary artery disease (CAD). However, many acute cardiac events occur in the absence of obstructive CAD. We assessed the lifetime cost-effectiveness of integrating a novel artificial intelligence-enhanced image analysis algorithm (AI-Risk) that stratifies the risk of cardiac events by quantifying coronary inflammation, combined with the extent of coronary artery plaque and clinical risk factors, by analysing images from routine CCTA. METHODS AND RESULTS: A hybrid decision-tree with population cohort Markov model was developed from 3,393 consecutive patients who underwent routine CCTA for suspected obstructive CAD and followed up for major adverse cardiac events over a median(IQR) of 7.7(6.4-9.1) years. In a prospective real-world evaluation survey of 744 consecutive patients undergoing CCTA for chest pain investigation, the availability of AI-Risk assessment led to treatment initiation or intensification in 45% of patients. In a further prospective study of 1,214 consecutive patients with extensive guideline recommended cardiovascular risk profiling, AI-Risk stratification led to treatment initiation or intensification in 39% of patients beyond the current clinical guideline recommendations. Treatment guided by AI-Risk modelled over a lifetime horizon could lead to fewer cardiac events (relative reductions of 4%, 4%, 11%, and 12% for myocardial infarction, ischaemic stroke, heart failure and cardiac death, respectively). Implementing AI-Risk classification in routine interpretation of CCTA is highly likely to be cost-effective (Incremental cost-effectiveness ratio £1,371-3,244), both in scenarios of current guideline compliance or when applied only to patients without obstructive CAD. CONCLUSIONS: Compared with standard care, the addition of AI-Risk assessment in routine CCTA interpretation is cost effective, by refining risk guided medical management
Inflammatory risk and cardiovascular events in patients without obstructive coronary artery disease: the ORFAN multicentre, longitudinal cohort study
Background: Coronary computed tomography angiography (CCTA) is the first line investigation for chest pain, and it is used to guide revascularisation. However, the widespread adoption of CCTA has revealed a large group of individuals without obstructive coronary artery disease (CAD), with unclear prognosis and management. Measurement of coronary inflammation from CCTA using the perivascular fat attenuation index (FAI) Score could enable cardiovascular risk prediction and guide the management of individuals without obstructive CAD. The Oxford Risk Factors And Non-invasive imaging (ORFAN) study aimed to evaluate the risk profile and event rates among patients undergoing CCTA as part of routine clinical care in the UK National Health Service (NHS); to test the hypothesis that coronary arterial inflammation drives cardiac mortality or major adverse cardiac events (MACE) in patients with or without CAD; and to externally validate the performance of the previously trained artificial intelligence (AI)-Risk prognostic algorithm and the related AI-Risk classification system in a UK population.
Methods: This multicentre, longitudinal cohort study included 40 091 consecutive patients undergoing clinically indicated CCTA in eight UK hospitals, who were followed up for MACE (ie, myocardial infarction, new onset heart failure, or cardiac death) for a median of 2·7 years (IQR 1·4–5·3). The prognostic value of FAI Score in the presence and absence of obstructive CAD was evaluated in 3393 consecutive patients from the two hospitals with the longest follow-up (7·7 years [6·4–9·1]). An AI-enhanced cardiac risk prediction algorithm, which integrates FAI Score, coronary plaque metrics, and clinical risk factors, was then evaluated in this population.
Findings: In the 2·7 year median follow-up period, patients without obstructive CAD (32 533 [81·1%] of 40 091) accounted for 2857 (66·3%) of the 4307 total MACE and 1118 (63·7%) of the 1754 total cardiac deaths in the whole of Cohort A. Increased FAI Score in all the three coronary arteries had an additive impact on the risk for cardiac mortality (hazard ratio [HR] 29·8 [95% CI 13·9–63·9], p<0·001) or MACE (12·6 [8·5–18·6], p<0·001) comparing three vessels with an FAI Score in the top versus bottom quartile for each artery. FAI Score in any coronary artery predicted cardiac mortality and MACE independently from cardiovascular risk factors and the presence or extent of CAD. The AI-Risk classification was positively associated with cardiac mortality (6·75 [5·17–8·82], p<0·001, for very high risk vs low or medium risk) and MACE (4·68 [3·93–5·57], p<0·001 for very high risk vs low or medium risk). Finally, the AI-Risk model was well calibrated against true events.
Interpretation: The FAI Score captures inflammatory risk beyond the current clinical risk stratification and CCTA interpretation, particularly among patients without obstructive CAD. The AI-Risk integrates this information in a prognostic algorithm, which could be used as an alternative to traditional risk factor-based risk calculators
Inflammatory risk and cardiovascular events in patients without obstructive coronary artery disease: the ORFAN multicentre, longitudinal cohort study
Background: Coronary computed tomography angiography (CCTA) is the first line investigation for chest pain, and it is used to guide revascularisation. However, the widespread adoption of CCTA has revealed a large group of individuals without obstructive coronary artery disease (CAD), with unclear prognosis and management. Measurement of coronary inflammation from CCTA using the perivascular fat attenuation index (FAI) Score could enable cardiovascular risk prediction and guide the management of individuals without obstructive CAD. The Oxford Risk Factors And Non-invasive imaging (ORFAN) study aimed to evaluate the risk profile and event rates among patients undergoing CCTA as part of routine clinical care in the UK National Health Service (NHS); to test the hypothesis that coronary arterial inflammation drives cardiac mortality or major adverse cardiac events (MACE) in patients with or without CAD; and to externally validate the performance of the previously trained artificial intelligence (AI)-Risk prognostic algorithm and the related AI-Risk classification system in a UK population. Methods: This multicentre, longitudinal cohort study included 40 091 consecutive patients undergoing clinically indicated CCTA in eight UK hospitals, who were followed up for MACE (ie, myocardial infarction, new onset heart failure, or cardiac death) for a median of 2·7 years (IQR 1·4-5·3). The prognostic value of FAI Score in the presence and absence of obstructive CAD was evaluated in 3393 consecutive patients from the two hospitals with the longest follow-up (7·7 years [6·4-9·1]). An AI-enhanced cardiac risk prediction algorithm, which integrates FAI Score, coronary plaque metrics, and clinical risk factors, was then evaluated in this population. Findings: In the 2·7 year median follow-up period, patients without obstructive CAD (32 533 [81·1%] of 40 091) accounted for 2857 (66·3%) of the 4307 total MACE and 1118 (63·7%) of the 1754 total cardiac deaths in the whole of Cohort A. Increased FAI Score in all the three coronary arteries had an additive impact on the risk for cardiac mortality (hazard ratio [HR] 29·8 [95% CI 13·9-63·9], p<0·001) or MACE (12·6 [8·5-18·6], p<0·001) comparing three vessels with an FAI Score in the top versus bottom quartile for each artery. FAI Score in any coronary artery predicted cardiac mortality and MACE independently from cardiovascular risk factors and the presence or extent of CAD. The AI-Risk classification was positively associated with cardiac mortality (6·75 [5·17-8·82], p<0·001, for very high risk vs low or medium risk) and MACE (4·68 [3·93-5·57], p<0·001 for very high risk vs low or medium risk). Finally, the AI-Risk model was well calibrated against true events. Interpretation: The FAI Score captures inflammatory risk beyond the current clinical risk stratification and CCTA interpretation, particularly among patients without obstructive CAD. The AI-Risk integrates this information in a prognostic algorithm, which could be used as an alternative to traditional risk factor-based risk calculators. Funding: British Heart Foundation, NHS-AI award, Innovate UK, National Institute for Health and Care Research, and the Oxford Biomedical Research Centre
Role of the virtual orbitals and HOMO-LUMO gap in mean-field approximations to the conductance of molecular junctions
Cancer treatment including radiotherapy reduces residual inflammatory risk in women with breast cancer
International audienceBackground Radiotherapy is believed to induce vascular injury in patients with cancer. However, the link between radiation therapy and cardiovascular risk remains unclear, particularly in women with breast cancer where the coronary arteries are directly radiated. Purpose To explore the direct impact of cancer treatment including radiotherapy (RT) on coronary inflammation and the residual inflammatory risk in women with breast cancer. Methods This prospective study included 101 breast cancer patients from the BACCARAT study treated with RT without chemotherapy. CCTA images were taken at baseline (before RT) and two years following RT. Coronary inflammation was measured in each coronary artery using the perivascular Fat Attenuation Index (FAI) Score, an established quantitative metric of coronary inflammation, corrected for age and gender. The residual inflammatory risk was quantified using the CaRi-Heart prognostic model that integrates FAI Score with clinical risk factors (diabetes, smoking, hyperlipidaemia, and hypertension) and coronary plaque burden, as previously described. Results Two years after RT, 83 patients had a complete set of paired analysable CCTAs. There was a marked parallel reduction of vascular inflammation at follow-up, as captured by the significant reduction in FAI score percentiles across all epicardial coronaries (p<0.0001 for RCA, p=0.031 for LAD, p=0.009 for LCX, a-c). Despite the increase in coronary calcification (p<0.001, d), the predicted 8-year risk for fatal cardiac events (CaRi-Heart Risk) was reduced by 14% in this population two years after radiotherapy (p=0.014, e). No change was observed in total epicardial adipose tissue (EpAT) volume (p=0.17), while there was no significant association between coronary inflammation and the amount of radiation exposure of the heart (f). Importantly, there was a meaningful risk reclassification 2 years after radiotherapy, with 45.9% of the high-risk patients reclassified to lower risk categories, and a parallel expansion of the "low" risk population from 8.5% to 24.4% (g). Conclusion This study demonstrates that cancer treatment including radiotherapy decreases baseline coronary inflammation and leads to significant reduction of the residual inflammatory risk in women with breast cancer, two years after treatment (h). The parallel increase of coronary calcification suggests plaque stabilization as coronary inflammation is reduced, and supports that vascular inflammation triggered by the tumour itself, rather than the radiotherapy, may partly explain increased cardiovascular risk in these women
CACHE Challenge #2: Targeting the RNA Site of the SARS-CoV-2 Helicase Nsp13
A critical assessment of computational hit-finding experiments (CACHE) challenge was conducted to predict ligands for the SARS-CoV-2 Nsp13 helicase RNA binding site, a highly conserved COVID-19 target. Twenty-three participating teams comprised of computational chemists and data scientists used protein structure and data from fragment-screening paired with advanced computational and machine learning methods to each predict up to 100 inhibitory ligands. Across all teams, 1957 compounds were predicted and were subsequently procured from commercial catalogs for biophysical assays. Of these compounds, 0.7% were confirmed to bind to Nsp13 in a surface plasmon resonance assay. The six best-performing computational workflows used fragment growing, active learning, or conventional virtual screening with and without complementary deep-learning scoring functions. Follow-up functional assays resulted in identification of two compound scaffolds that bound Nsp13 with a Kd below 10 μM and inhibited in vitro helicase activity. Overall, CACHE #2 participants were successful in identifying hit compound scaffolds targeting Nsp13, a central component of the coronavirus replication-transcription complex. Computational design strategies recurrently successful across the first two CACHE challenges include linking or growing docked or crystallized fragments and docking small and diverse libraries to train ultrafast machine-learning models. The CACHE #2 competition reveals how crowd-sourcing ligand prediction efforts using a distinct array of approaches followed with critical biophysical assays can result in novel lead compounds to advance drug discovery efforts
CACHE Challenge #2:Targeting the RNA Site of the SARS-CoV-2 Helicase Nsp13
A critical assessment of computational hit-finding experiments (CACHE) challenge was conducted to predict ligands for the SARS-CoV-2 Nsp13 helicase RNA binding site, a highly conserved COVID-19 target. Twenty-three participating teams comprised of computational chemists and data scientists used protein structure and data from fragment-screening paired with advanced computational and machine learning methods to each predict up to 100 inhibitory ligands. Across all teams, 1957 compounds were predicted and were subsequently procured from commercial catalogs for biophysical assays. Of these compounds, 0.7% were confirmed to bind to Nsp13 in a surface plasmon resonance assay. The six best-performing computational workflows used fragment growing, active learning, or conventional virtual screening with and without complementary deep-learning scoring functions. Follow-up functional assays resulted in identification of two compound scaffolds that bound Nsp13 with a Kd below 10 μM and inhibited in vitro helicase activity. Overall, CACHE #2 participants were successful in identifying hit compound scaffolds targeting Nsp13, a central component of the coronavirus replication-transcription complex. Computational design strategies recurrently successful across the first two CACHE challenges include linking or growing docked or crystallized fragments and docking small and diverse libraries to train ultrafast machine-learning models. The CACHE #2 competition reveals how crowd-sourcing ligand prediction efforts using a distinct array of approaches followed with critical biophysical assays can result in novel lead compounds to advance drug discovery efforts.</p
