7 research outputs found

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Improving reading in every class.

    No full text
    337 p.; 23 cm

    Immigration and the War on Crime: Law and Order Politics and the Illegal Immigration Reform and Immigrant Responsibility Act of 1996

    No full text

    Prognostic relevance of gait-related cognitive functions for dementia conversion in amnestic mild cognitive impairment

    No full text
    Background: Increasing research suggests that gait abnormalities can be a risk factor for Alzheimer's Disease (AD). Notably, there is growing evidence highlighting this risk factor in individuals with amnestic Mild Cognitive Impairment (aMCI), however further studies are needed. The aim of this study is to analyze cognitive tests results and brain-related measures over time in aMCI and examine how the presence of gait abnormalities (neurological or orthopedic) or normal gait affects these trends. Additionally, we sought to assess the significance of gait and gait-related measures as prognostic indicators for the progression from aMCI to AD dementia, comparing those who converted to AD with those who remained with a stable aMCI diagnosis during the follow-up. Methods: Four hundred two individuals with aMCI from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were included. Robust linear mixed-effects models were used to study the impact of gait abnormalities on a comprehensive neuropsychological battery over 36 months while controlling for relevant medical variables at baseline. The impact of gait on brain measures was also investigated. Lastly, the Cox proportional-hazards model was used to explore the prognostic relevance of abnormal gait and neuropsychological associated tests. Results: While controlling for relevant covariates, we found that gait abnormalities led to a greater decline over time in attention (DSST) and global cognition (MMSE). Intriguingly, psychomotor speed (TMT-A) and divided attention (TMT-B) declined uniquely in the abnormal gait group. Conversely, specific AD global cognition tests (ADAS-13) and auditory-verbal memory (RAVLT immediate recall) declined over time independently of gait profile. All the other cognitive tests were not significantly affected by time or by gait profile. In addition, we found that ventricles size increased faster in the abnormal gait group compared to the normal gait group. In terms of prognosis, abnormal gait (HR = 1.7), MMSE (HR = 1.09), and DSST (HR = 1.03) covariates showed a higher impact on AD dementia conversion. Conclusions: The importance of the link between gait and related cognitive functions in terms of diagnosis, prognosis, and rehabilitation in aMCI is critical. We showed that in aMCI gait abnormalities lead to executive functions/attention deterioration and conversion to AD dementia
    corecore