109 research outputs found

    Temperature control on CO2 emissions from the weathering of sedimentary rocks

    Get PDF
    Sedimentary rocks can release carbon dioxide (CO2) during the weathering of rock organic carbon and sulfide minerals. This sedimentary carbon could act as a feedback on Earth’s climate over millennial to geological timescales, yet the environmental controls on the CO2 release from rocks are poorly constrained. Here, we directly measure CO2 flux from weathering of sedimentary rocks over 2.5 years at the Draix-Bléone Critical Zone Observatory, France. Total CO2 fluxes approached values reported for soil respiration, with radiocarbon analysis confirming the CO2 source from rock organic carbon and carbonate. The measured CO2 fluxes varied seasonally, with summer fluxes five times larger than winter fluxes, and were positively correlated with temperature. The CO2 release from rock organic carbon oxidation increased by a factor of 2.2 when temperature increased by 10 °C. This temperature sensitivity is similar to that of degradation of recent-plant-derived organic matter in soils. Our flux measurements identify sedimentary-rock weathering as a positive feedback to warming, which may have operated throughout Earth’s history to force the surface carbon cycle

    Long-term patterns of hillslope erosion by earthquake-induced landslides shape mountain landscapes

    Get PDF
    Widespread triggering of landslides by large storms or earthquakes is a dominant mechanism of erosion in mountain landscapes. If landslides occur repeatedly in particular locations within a mountain range, then they will dominate the landscape evolution of that section and could leave a fingerprint in the topography. Here, we track erosion provenance using a novel combination of the isotopic and molecular composition of organic matter deposited in Lake Paringa, New Zealand. We find that the erosion provenance has shifted markedly after four large earthquakes over 1000 years. Postseismic periods eroded organic matter from a median elevation of 722 +329/−293 m and supplied 43% of the sediment in the core, while interseismic periods sourced from lower elevations (459 +256/−226 m). These results are the first demonstration that repeated large earthquakes can consistently focus erosion at high elevations, while interseismic periods appear less effective at modifying the highest parts of the topography

    Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles

    Full text link
    MCM-41 silica nanoparticles were used as inorganic scaffolding to prepare a nanoscopic-capped hybrid material S1, which was able to release an entrapped cargo in the presence of certain enzymes, whereas in the absence of enzymes, a zero release system was obtained. S1 was prepared by loading nanoparticles with Safranine O dye and was then capped with a gluconamide derivative. In the absence of enzymes, the release of the dye from the aqueous suspensions of S1 was inhibited as a result of the steric hindrance imposed by the bulky gluconamide derivative, the polymerized gluconamide layer and the formation of a dense hydrogen-bonded network around the pore outlets. Upon the addition of amidase and pronase enzymes, delivery of Safranine O dye was observed due to the enzymatic hydrolysis of the amide bond in the anchored gluconamide derivative. S1 nanoparticles were not toxic for cells, as demonstrated by cell viability assays using HeLa and MCF-7 cell lines, and were associated with lysosomes, as shown by confocal microscopy. Finally, the S1¿CPT material loaded with the cytotoxic drug camptothecin and capped with the gluconamide derivative was prepared. The HeLa cells treated with S1¿CPT underwent cell death as a result of material internalization, and of the subsequent cellular enzyme-mediated hydrolysis and aperture of the molecular gate, which induced the release of the camptothecin cargo.We thank the Spanish Government (Project MAT2009-14564-C04 and SAF2010-15512) and the Generalitat Valenciana (Project PROMETEO/2009/016and/2010/005) for support. I. C. thanks the Universitat Politecnica de Valencia for her fellowship. L. M. thanks the Generalitat Valenciana for her post-doctoral VALi+d contract. E. A. and C. T. also thank the CIBER-BBN for contracts. We thank Eva Maria Lafuente Villarreal and Alberto Hernandez Cano from the Confocal Microscopy service of CIPF and the Electronic Microscopy service of UPV for their technical support.Candel Busquets, I.; Aznar Gimeno, E.; Mondragón Martínez, L.; De La Torre Paredes, C.; Martínez Mañez, R.; Sancenón Galarza, F.; Marcos Martínez, MD.... (2012). Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale. 4(22):7237-7245. https://doi.org/10.1039/c2nr32062bS7237724542

    Researching underwater: a submerged study

    Get PDF
    This chapter explores the unknown territory of a lost project: an ethnography of a public swimming pool. The discussion is contextualised within my broader sociological theory of ‘nothing’, as a category of unmarked, negative social phenomena, including no-things, no-bodies, no-wheres, non-events and non-identities. These meaningful symbolic objects are constituted through social interaction, which can take two forms: acts of commission and acts of omission. I tell the story of how this project did not happen, through the things I did not do or that did not materialise, and how I consequently did not become a certain type of researcher. I identify three types of negative phenomena that I did not observe and document – invisible figures, silent voices and empty vessels – and, consequently, the knowledge I did not acquire. However, nothing is also productive, generating new symbolic objects as substitutes, alternatives and replacements: the somethings, somebodies and somewheres that are done or made instead. Thus finally, I reflect on how not doing this project led me to pursue others, cultivating a different research identity that would not otherwise have existed

    Effects of Alcohol on the Acquisition and Expression of Fear Potentiated Startle in Mouse Lines Selectively Bred for High and Low Alcohol Preference

    Get PDF
    Rationale: Anxiety disorders and alcohol-use disorders frequently co-occur in humans perhaps because alcohol relieves anxiety. Studies in humans and rats indicate that alcohol may have greater anxiolytic effects in organisms with increased genetic propensity for high alcohol consumption. Objectives and Methods: The purpose of this study was to investigate the effects of moderate doses of alcohol (0.5, 1.0, 1.5 g/kg) on the acquisition and expression of anxiety-related behavior using a fear-potentiated startle (FPS) procedure. Experiments were conducted in two replicate pairs of mouse lines selectively bred for high- (HAP1 and HAP2) and low- (LAP1 and LAP2) alcohol preference; these lines have previously shown a genetic correlation between alcohol preference and FPS (HAP\u3eLAP; Barrenha and Chester 2007). In a control experiment, the effect of diazepam (4.0 mg/kg) on the expression of FPS was tested in HAP2 and LAP2 mice. Results: The 1.5 g/kg alcohol dose moderately decreased the expression of FPS in both HAP lines but not LAP lines. Alcohol had no effect on the acquisition of FPS in any line. Diazepam reduced FPS to a similar extent in both HAP2 and LAP2 mice. Conclusions: HAP mice may be more sensitive to the anxiolytic effects of alcohol than LAP mice when alcohol is given prior to the expression of FPS. These data collected in two pairs of HAP/LAP mouse lines suggest that the anxiolytic response to alcohol in HAP mice may be genetically correlated with their propensity toward high alcohol preference and robust FPS

    Safe approaches for camptothecin delivery: Structural analogues and nanomedicines

    Full text link
    [EN] Twenty-(S)-camptothecin is a strongly cytotoxic molecule with excellent antitumor activity over a wide spectrum of human cancers. However, the direct formulation is limited by its poor water solubility, low plasmatic stability and severe toxicity, which currently limits its clinical use. As a consequence, two strategies have been developed in order to achieve safe and efficient delivery of camptothecin to target cells: structural analogues and nanomedicines. In this review, we summarize recent advances in the design, synthesis and development of camptothecin molecular derivatives and supramolecular vehicles, following a systematic classification according to structure-activity relationships (structural analogues) or chemical nature (nanomedicines). A series of organic, inorganic and hybrid materials are presented as nanoplatforms to overcome camptothecin restrictions in administration, biodistribution, pharmacokinetics and toxicity. Nanocarriers which respond to a variety of stimuli endogenously (e.g., pH, redox potential, enzyme activity) or exogenously (e.g., magnetic field, light, temperature, ultrasound) seem the best positioned therapeutic materials for optimal spatial and temporal control over drug release. The main goal of this review is to be used as a source of relevant literature for others interested in the field of camptothecin-based therapeutics. To this end, final remarks on the most important formulations currently under clinical trial are provided. (C) 2016 Elsevier B.V. All rights reserved.Financial support of the Spanish Ministry of Economy and Competitiveness (projects MAT2012-39290-C02-02 and SEV-2012-0267) is gratefully acknowledged. Dr. E.M. Rivero thanks the Cursol Foundation for a post-doctoral scholarship.Botella Asuncion, P.; Rivero-Buceta, EM. (2017). Safe approaches for camptothecin delivery: Structural analogues and nanomedicines. Journal of Controlled Release. 247:28-54. https://doi.org/10.1016/j.jconrel.2016.12.023S285424

    Upstream regulatory architecture of rice genes: summarizing the baseline towards genus-wide comparative analysis of regulatory networks and allele mining

    Get PDF

    Grand Strategy and Peace Operations: the Brazilian Case

    Full text link

    Numerical modeling of the impact of major earthquakes on river dynamics

    No full text
    Dans les chaînes de montagnes, les séismes de magnitudes intermédiaires à fortes (Mw>6) déclenchent systématiquement un grand nombre de glissements de terrain responsables de l'introduction de volumes massifs de sédiments dans le réseau fluviatile. L'évacuation progressive de ces sédiments hors de la zone épicentrale affecte la dynamique des rivières et provoque des aléas hydro-sédimentaires dans les plaines alluviales (avulsion des rivières, crues...). La quantification des transferts sédimentaires est essentielle pour mieux comprendre l'évolution des paysages à court et moyen terme (de l'heure au siècle) et permettre une gestion efficace des risques dans les zones d'accumulation. Cependant, les flux de sédiments grossiers étant difficiles à mesurer, les facteurs contrôlant l'évacuation des glissements de terrain restent à ce jour mal compris. Cette thèse a donc porté sur l'étude, via la modélisation, des paramètres influençant la mobilisation des glissements de terrain, la préservation de la capacité de transport la transition entre gorge et plaine alluviale et la dynamique court terme des cônes alluviaux soumis à de forts apports sédimentaires. Les approches développées sont appliquées au contexte de la côte Ouest de la Nouvelle Zélande où la probabilité d'occurrence d'un séisme de magnitude 8 est de 50% dans les 50 ans à venir. Cette problématique à été abordée analytiquement et via une approche numérique avec le modèle 2D d'évolution des paysages et des rivières, Eros. Avec l'approche analytique, nous démontrons que la conservation de la capacité de transport long terme à la transition entre gorges et plaines alluviales est généralement réalisée par le passage à un système en tresse. Nous identifions aussi la variabilité des débits comme facteur dominant de la capacité de transport long terme comparé à l'effet de la végétation riparienne. Avec l'approche numérique, nous utilisons Eros qui est composé 1. d'un modèle hydrodynamique 2D, 2. d'un modèle de transport/dépôt de sédiments et 3. de modèles gérant les flux latéraux d'érosion et de dépôt. La combinaison de ces éléments permet l'émergence de diverses géométries de rivières alluviales (droites/sinueuses ou en tresses) en fonction des forçages externes qu'elles subissent (débit d'eau, flux sédimentaires). L'application d'Eros à des cas naturels a nécessité la validation et la calibration de ses paramètres principaux à l'aide: 1. de solutions analytiques et 2. de la reproduction morphodynamique de systèmes naturels, tel que l'évolution de la rivière Poerua en Nouvelle Zélande suite au glissement de terrain du Mont Adams. Dans la partie aval du bassin, les simulations numériques démontrent les capacités du modèle 1) à prédire efficacement l'évolution de plaines alluviales soumises à plusieurs scénario d'apports sédimentaires massifs et 2) à générer des cartes de risques probabilistes. Dans la partie amont du bassin, les résultats mettent en évidence le rôle clef de la réduction dynamique de largeur des rivières par rapport à la largeur de la gorge fluviatile, sur l'accélération de l'évacuation des sédiments issus des glissements de terrain. Une loi unique caractérisant les temps d'export d'une distribution de glissements de terrain peut être définie en fonction du rapport entre volume de sédiment et capacité de transport initiale de la rivière, permettant ainsi d'estimer leur temps de résidence moyen à 5-30 ans pour un scénario de séisme de Mw=8 beaucoup plus faibles que ceux estimés précédemment (~100 ans). L'approche numérique développée dans ce travail suggère que l'étude de la réponse des chaînes de montagnes à un forçage sismique fort ne peut être effectuée efficacement qu'avec un modèle 2D capable de prendre en compte les non-linéarités entre écoulements des rivières, leurs géométries et le transport sédimentaire. Les résultats obtenus permettent une meilleure caractérisation de la dynamique des paysages à l'échelle du cycle sismique et des aléas à court terme.In mountainous areas, intermediate to large earthquakes (Mw > 6) systematically trigger a large number of landslides supplying the fluvial network with massive volumes of sediment. The progressive evacuation of the sediment out of the epicentral area alters river dynamics and may cause hydro-sedimentary hazards in alluvial plains (river avulsion, inundations, bank erosion, ...). The quantification of sediment transfers is critical to better understand landscape evolution on short timescales (i.e. hours to centuries) and improve hazard management in deposition areas. However, the factors controlling the coarse sediment transfers are still poorly known due to a lack of field measurements and adequate numerical models. The aim of this work is thus to study, via numerical modeling, the parameters influencing landslides evacuation, the transport capacity variations at the gorge/alluvial plain transition and the short-term dynamics and hazards of alluvial fans. This work is set up in the context of the West Coast of New Zealand (NZ) which presents a 50% probability to experience a magnitude 8 earthquake in the next 50 years. This problematic has been addressed analytically and via a numerical approach. Using the analytical approach, we demonstrate that the conservation of long-term transport capacity at the bedrock gorge and alluvial plain transition usually implies the channel narrowing in the alluvial part that is generally realized by a transition to a braided system. We identify discharge variability as the dominant factor of alluvial river long term transport capacity compared to riparian vegetation. To explore the role of channel self-organization on coarse sediment transport, we use Eros, a 2D morphodynamic model able to simulate landscape evolution improved by a new 2D hydrodynamic model. Combined with a sediment transport/deposition model and lateral fluxes modeling (bank erosion and transverse deposition), Eros allows for the emergence of diverse alluvial river regimes and geometries (e.g. straight/sinuous and braided channels) as a function of the external forcing experienced by the river (water and sediment fluxes). The application of Eros on natural cases has required the validation and calibration of its principal parameters using analytical solutions and the morphodynamic reproduction of natural systems such as the evolution of the Poerua river in New Zealand following the Mount Adams landslide. In the downstream part of the catchment, the ensemble numerical simulations demonstrate Eros abilities to 1) efficiently predict the morphodynamic evolution of alluvial fans submitted to different scenarios of large sediment supplies and 2) generate probabilistic risk maps. In the upstream part, the results highlight the dominant role of dynamic river narrowing reducing export times of landslide-derived sediments. We define a new law characterizing export times as a function of landslide volume and pre-landslide transport capacity that predicts mean residence times for a M8 earthquake in a mountain range of 5-30 yr, much lower than previous estimations of ~ 100 yr. The numerical approach developed in this work suggests that the study of mountain ranges response to severe landslide disruption can only be addressed with a 2D model able to account for the non-linearities between river flow, channel geometry and sediment transport. The results allow for a better characterization of landscape dynamics at the scale of a seismic cycle and hydro-sedimentary hazards in the short term

    How landslides impact river dynamics?

    No full text
    International audienc
    corecore