8,709 research outputs found

    Highly crosslinked silicon polymers for gas chromatography columns

    Get PDF
    A new highly crosslinked silicone polymer particle for gas chromatography application and a process for synthesizing such copolymer are described. The new copolymer comprises vinyltriethoxysilane and octadecyltrichlorosilane. The copolymer has a high degree of crosslinking and a cool balance of polar to nonpolar sites in the porous silicon polymer assuring fast separation of compounds of variable polarity

    Synthesis and Development of Porous Polymeric Column Packing and Microchip Detectors for GC Analysis of Extraterrestrial Atmospheres

    Get PDF
    This report summarizes the last nine years research accomplishments under Cooperative Agreement NCC2-650 between NASA, Ames Research Center and SETI Institute. Four Major research tasks are conducted: 1. Gas chromatography column development. 2. Pyrosensor development. 3. Micro-machining gas chromatography instrument development. 4. Amino acid analysis and high molecular weight polyamino acid synthesis under prebiotic conditions. The following describes these results

    Inactivation of presenilins causes pre-synaptic impairment prior to post-synaptic dysfunction

    Full text link
    Synaptic dysfunction is widely thought to be a pathogenic precursor to neurodegeneration in Alzheimer’s disease (AD), and the extent of synaptic loss provides the best correlate for the severity of dementia in AD patients. Presenilins 1 and 2 are the major causative genes of early‐onset familial AD. Conditional inactivation of presenilins in the adult cerebral cortex results in synaptic dysfunction and memory impairment, followed by age‐dependent neurodegeneration. To characterize further the consequence of presenilin inactivation in the synapse, we evaluated the temporal development of pre‐synaptic and post‐synaptic deficits in the Schaeffer‐collateral pathway of presenilin conditional double knockout (PS cDKO) mice prior to onset of neurodegeneration. Following presenilin inactivation at 4 weeks, synaptic facilitation and probability of neurotransmitter release are impaired in PS cDKO mice at 5 weeks of age, whereas post‐synaptic NMDA receptor (NMDAR)‐mediated responses are normal at 5 weeks but impaired at 6 weeks of age. Long‐term potentiation induced by theta burst stimulation is also reduced in PS cDKO mice at 6 weeks of age. These results show that loss of presenilins results in pre‐synaptic deficits in short‐term plasticity and probability of neurotransmitter release prior to post‐synaptic NMDAR dysfunction, raising the possibility that presenilins may regulate post‐synaptic NMDAR function in part via a trans‐synaptic mechanism.This work was supported by the National Institute of Health NS041783 (to J.S.). We would like to thank Xiaoyan Zou and Huailong Zhao for technical assistance. (NS041783 - National Institute of Health)Published versio

    Growth diagram of La0.7Sr0.3MnO3 thin films using pulsed laser deposition

    Get PDF
    An experimental study was conducted on controlling the growth mode of La0.7Sr0.3MnO3 thin films on SrTiO3 substrates using pulsed laser deposition (PLD) by tuning growth temperature, pressure and laser fluence. Different thin film morphology, crystallinity and stoichiometry have been observed depending on growth parameters. To understand the microscopic origin, the adatom nucleation, step advance processes and their relationship to film growth were theoretically analyzed and a growth diagram was constructed. Three boundaries between highly and poorly crystallized growth, 2D and 3D growth, stoichiometric and non-stoichiometric growth were identified in the growth diagram. A good fit of our experimental observation with the growth diagram was found. This case study demonstrates that a more comprehensive understanding of the growth mode in PLD is possible

    Antiarrhythmic and proarrhythmic effects of subcutaneous nerve stimulation in ambulatory dogs

    Get PDF
    Background High output subcutaneous nerve stimulation (ScNS) remodels the stellate ganglia and suppresses cardiac arrhythmia. Objective To test the hypothesis that long duration low output ScNS causes cardiac nerve sprouting, increases plasma norepinephrine concentration and the durations of paroxysmal atrial tachycardia (PAT) in ambulatory dogs. Methods We prospectively randomized 22 dogs (11 males and 11 females) into 5 different output groups for 2 months of ScNS: 0 mA (sham) (N=6), 0.25 mA (N=4), 1.5 mA (N=4), 2.5 mA (N=4) and 3.5 mA (N=4). Results As compared with baseline, the changes of the durations of PAT episodes per 48 hours were significantly different among different groups (sham, -5.0±9.5 s; 0.25 mA 95.5±71.0 s; 1.5 mA, -99.3±39.6 s; 2.5 mA, -155.3±87.8 s and 3.5 mA, -76.3±44.8 s, p<0.001). The 3.5 mA group had greater reduction of sinus heart rate than the sham group (-29.8±15.0 bpm vs -14.5±3.0 bpm, p=0.038). Immunohistochemical studies showed that the 0.25 mA group had a significantly increased while 2.5 mA and 3.5 mA stimulation had a significantly reduced growth-associated protein 43 nerve densities in both atria and ventricles. The plasma Norepinephrine concentrations in 0.25 mA group was 5063.0±4366.0 pg/ml, which was significantly higher than other groups of dogs (739.3±946.3, p=0.009). There were no significant differences in the effects of simulation between males and females. Conclusions In ambulatory dogs, low output ScNS causes cardiac nerve sprouting, increases plasma norepinephrine concentration and the duration of PAT episodes while high output ScNS is antiarrhythmic

    Generalized Rosenfeld scalings for tracer diffusivities in not-so-simple fluids: Mixtures and soft particles

    Full text link
    Rosenfeld [Phys. Rev. A 15, 2545 (1977)] noticed that casting transport coefficients of simple monatomic, equilibrium fluids in specific dimensionless forms makes them approximately single-valued functions of excess entropy. This has predictive value because, while the transport coefficients of dense fluids are difficult to estimate from first principles, excess entropy can often be accurately predicted from liquid-state theory. Here, we use molecular simulations to investigate whether Rosenfeld's observation is a special case of a more general scaling law relating mobility of particles in mixtures to excess entropy. Specifically, we study tracer diffusivities, static structure, and thermodynamic properties of a variety of one- and two-component model fluid systems with either additive or non-additive interactions of the hard-sphere or Gaussian-core form. The results of the simulations demonstrate that the effects of mixture concentration and composition, particle-size asymmetry and additivity, and strength of the interparticle interactions in these fluids are consistent with an empirical scaling law relating the excess entropy to a new dimensionless (generalized Rosenfeld) form of tracer diffusivity, which we introduce here. The dimensionless form of the tracer diffusivity follows from knowledge of the intermolecular potential and the transport / thermodynamic behavior of fluids in the dilute limit. The generalized Rosenfeld scaling requires less information, and provides more accurate predictions, than either Enskog theory or scalings based on the pair-correlation contribution to the excess entropy. As we show, however, it also suffers from some limitations, especially for systems that exhibit significant decoupling of individual component tracer diffusivities.Comment: 15 pages, 10 figure
    • 

    corecore