8,891 research outputs found
Quantification of the Individual Characteristics of the Human Dentition
The considerations for admissibility suggested by the Daubert trilogy challenge forensic experts to provide scientific support for opinion testimony. The defense bar has questioned the reliability of bitemark analysis. Under an award from the U. S. Department of Justice, via the Midwest Forensic Resource Center, a two-year feasibility study was undertaken to quantify six dental characteristics. Using two computer programs, the exemplars of 419 volunteers were digitally scanned, characteristics were measured, and frequency was calculated. The study demonstrates that there were outliers or rare dental characteristics in measurements. An analysis of the intra-observer and inter-observer consistency demonstrated a high degree of agreement. Expansion of the sample size through collaboration with other academic researchers will be necessary to be able to quantify the occurrence of these characteristics in the general population. The automated software application, Tom\u27s Toolbox, developed specifically for this research project, could also provide a template for precisely quantifying other pattern evidence
Response of a Pearly Eye Melon Fly Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) Mutant to Host-Associated Visual Cues
We report on a pearly eye mutant (PEM) line generated from a single male of Bactrocera cucurbitae collected in Kapoho, Hawaii. Crossing experi- ments with colony wild-type flies indicate that the locus controlling this trait is autosomal and the mutant allele is recessive. Experiments with females to assess response to visual oviposition cues (shape and color) suggest that PEM flies are at least unresponsive to color, and likely also unable to perceive visual shape cues. This phenotype has been described from field collection before, but its visual abili- ties have not previously been tested. The rediscovery of the PEM phenotype and results of the vision test support the hypothesis that the PEM trait has significant negative fitness consequences in the field, and that the recessive allele resulting in this phenotype probably occurs at a low frequency in nature
Mars and the Science Programme. The case for Mars Polar Science
Current plans within ESA for the future investigation of Mars (after the ExoMars programme) are centred around participation in the Mars Sample Return (MSR) programme led by NASA. This programme is housed within the Human and Robotic Exploration (HRE) directorate of ESA. This paper focuses on the important scientific objectives for the investigation of Mars outside the present HRE planning. The achievement of these objectives by Science Directorate missions is entirely consistent with ESAâs Science Programme. We illustrate this with a theme centred around study of the Martian polar caps and the investigation of recent (Amazonian) climate change produced by wellâestablished oscillations in Marsâ orbital parameters. Deciphering the record of climate contained within the polar
caps would allow us to learn about the climatic evolution of another planet over the past few to hundreds of millions of years, and also addresses the more general goal of investigating volatileârelated dynamic processes in the Solar System
Mars and the Science Programme. The case for Mars Polar Science
Current plans within ESA for the future investigation of Mars (after the ExoMars programme) are centred around participation in the Mars Sample Return (MSR) programme led by NASA. This programme is housed within the Human and Robotic Exploration (HRE) directorate of ESA. This paper focuses on the important scientific objectives for the investigation of Mars outside the present HRE planning. The achievement of these objectives by Science Directorate missions is entirely consistent with ESAâs Science Programme. We illustrate this with a theme centred around study of the Martian polar caps and the investigation of recent (Amazonian) climate change produced by wellâestablished oscillations in Marsâ orbital parameters. Deciphering the record of climate contained within the polar
caps would allow us to learn about the climatic evolution of another planet over the past few to hundreds of millions of years, and also addresses the more general goal of investigating volatileârelated dynamic processes in the Solar System
Na(V)1.5 sodium channel window currents contribute to spontaneous firing in olfactory sensory neurons
Olfactory sensory neurons (OSNs) fire spontaneously as well as in response to odor; both forms of firing are physiologically important. We studied voltage-gated Na+ channels in OSNs to assess their role in spontaneous activity. Whole cell patch-clamp recordings from OSNs demonstrated both tetrodotoxin-sensitive and tetrodotoxin-resistant components of Na+ current. RT-PCR showed mRNAs for five of the nine different Na+ channel α-subunits in olfactory tissue; only one was tetrodotoxin resistant, the so-called cardiac subtype NaV1.5. Immunohistochemical analysis indicated that NaV1.5 is present in the apical knob of OSN dendrites but not in the axon. The NaV1.5 channels in OSNs exhibited two important features: 1) a half-inactivation potential near â100 mV, well below the resting potential, and 2) a window current centered near the resting potential. The negative half-inactivation potential renders most NaV1.5 channels in OSNs inactivated at the resting potential, while the window current indicates that the minor fraction of noninactivated NaV1.5 channels have a small probability of opening spontaneously at the resting potential. When the tetrodotoxin-sensitive Na+ channels were blocked by nanomolar tetrodotoxin at the resting potential, spontaneous firing was suppressed as expected. Furthermore, selectively blocking NaV1.5 channels with Zn2+ in the absence of tetrodotoxin also suppressed spontaneous firing, indicating that NaV1.5 channels are required for spontaneous activity despite resting inactivation. We propose that window currents produced by noninactivated NaV1.5 channels are one source of the generator potentials that trigger spontaneous firing, while the upstroke and propagation of action potentials in OSNs are borne by the tetrodotoxin-sensitive Na+ channel subtypes.This work was aided by support from Boston University, the Rocky Mountain Taste and Smell Center Core for Cellular Visualization and Analysis [National Institute on Deafness and Other Communication Disorders (NIDCD) P30 DC-04657; D. Restrepo, principal investigator], and NIDCD Grants DC-04863 to V. Dionne and DC-006070 to D. Restrepo and T. E. Finger. (Boston University; P30 DC-04657 - Rocky Mountain Taste and Smell Center Core for Cellular Visualization and Analysis [National Institute on Deafness and Other Communication Disorders (NIDCD)]; DC-04863 - Rocky Mountain Taste and Smell Center Core for Cellular Visualization and Analysis [National Institute on Deafness and Other Communication Disorders (NIDCD)]; DC-006070 - Rocky Mountain Taste and Smell Center Core for Cellular Visualization and Analysis [National Institute on Deafness and Other Communication Disorders (NIDCD)])https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122723/Accepted manuscrip
Responding to Mechanical Antigravity
Based on the experiences of the NASA Breakthrough Propulsion Physics Project, suggestions are offered for constructively responding to proposals that purport breakthrough propulsion using mechanical devices. Because of the relatively large number of unsolicited submissions received (about 1 per workday) and because many of these involve similar concepts, this report is offered to help the would-be submitters make genuine progress as well as to help reviewers respond to such submissions. Devices that use oscillating masses or gyroscope falsely appear to create net thrust through differential friction or by misinterpreting torques as linear forces. To cover both the possibility of an errant claim and a genuine discovery, reviews should require that submitters meet minimal thresholds of proof before engaging in further correspondence; such as achieving sustained deflection of a level-platform pendulum in the case of mechanical thrusters
Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics.
UnlabelledRegionally distinct wine characteristics (terroir) are an important aspect of wine production and consumer appreciation. Microbial activity is an integral part of wine production, and grape and wine microbiota present regionally defined patterns associated with vineyard and climatic conditions, but the degree to which these microbial patterns associate with the chemical composition of wine is unclear. Through a longitudinal survey of over 200 commercial wine fermentations, we demonstrate that both grape microbiota and wine metabolite profiles distinguish viticultural area designations and individual vineyards within Napa and Sonoma Counties, California. Associations among wine microbiota and fermentation characteristics suggest new links between microbiota, fermentation performance, and wine properties. The bacterial and fungal consortia of wine fermentations, composed from vineyard and winery sources, correlate with the chemical composition of the finished wines and predict metabolite abundances in finished wines using machine learning models. The use of postharvest microbiota as an early predictor of wine chemical composition is unprecedented and potentially poses a new paradigm for quality control of agricultural products. These findings add further evidence that microbial activity is associated with wine terroirImportanceWine production is a multi-billion-dollar global industry for which microbial control and wine chemical composition are crucial aspects of quality. Terroir is an important feature of consumer appreciation and wine culture, but the many factors that contribute to terroir are nebulous. We show that grape and wine microbiota exhibit regional patterns that correlate with wine chemical composition, suggesting that the grape microbiome may influence terroir In addition to enriching our understanding of how growing region and wine properties interact, this may provide further economic incentive for agricultural and enological practices that maintain regional microbial biodiversity
The MASSIVE Survey - I. A Volume-Limited Integral-Field Spectroscopic Study of the Most Massive Early-Type Galaxies within 108 Mpc
Massive early-type galaxies represent the modern-day remnants of the earliest
major star formation episodes in the history of the universe. These galaxies
are central to our understanding of the evolution of cosmic structure, stellar
populations, and supermassive black holes, but the details of their complex
formation histories remain uncertain. To address this situation, we have
initiated the MASSIVE Survey, a volume-limited, multi-wavelength,
integral-field spectroscopic (IFS) and photometric survey of the structure and
dynamics of the ~100 most massive early-type galaxies within a distance of 108
Mpc. This survey probes a stellar mass range M* > 10^{11.5} Msun and diverse
galaxy environments that have not been systematically studied to date. Our
wide-field IFS data cover about two effective radii of individual galaxies, and
for a subset of them, we are acquiring additional IFS observations on
sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band
imaging to trace the extended halos of the galaxies and measure accurate total
magnitudes. Dynamical orbit modeling of the combined data will allow us to
simultaneously determine the stellar, black hole, and dark matter halo masses.
The primary goals of the project are to constrain the black hole scaling
relations at high masses, investigate systematically the stellar initial mass
function and dark matter distribution in massive galaxies, and probe the
late-time assembly of ellipticals through stellar population and kinematical
gradients. In this paper, we describe the MASSIVE sample selection, discuss the
distinct demographics and structural and environmental properties of the
selected galaxies, and provide an overview of our basic observational program,
science goals and early survey results.Comment: 19 pages, 14 figures. ApJ (2014) vol. 795, in pres
The MASSIVE Survey II: Stellar Population Trends Out to Large Radius in Massive Early Type Galaxies
We examine stellar population gradients in ~100 massive early type galaxies
spanning 180 < sigma* < 370 km/s and M_K of -22.5 to -26.5 mag, observed as
part of the MASSIVE survey (Ma et al. 2014). Using integral-field spectroscopy
from the Mitchell Spectrograph on the 2.7m telescope at McDonald Observatory,
we create stacked spectra as a function of radius for galaxies binned by their
stellar velocity dispersion, stellar mass, and group richness. With excellent
sampling at the highest stellar mass, we examine radial trends in stellar
population properties extending to beyond twice the effective radius (~2.5
R_e). Specifically, we examine trends in age, metallicity, and abundance ratios
of Mg, C, N, and Ca, and discuss the implications for star formation histories
and elemental yields. At a fixed physical radius of 3-6 kpc (the likely size of
the galaxy cores formed at high redshift) stellar age and [alpha/Fe] increase
with increasing sigma* and depend only weakly on stellar mass, as we might
expect if denser galaxies form their central cores earlier and faster. If we
instead focus on 1-1.5 R_e, the trends in abundance and abundance ratio are
washed out, as might be expected if the stars at large radius were accreted by
smaller galaxies. Finally, we show that when controlling for \sigmastar, there
are only very subtle differences in stellar population properties or gradients
as a function of group richness; even at large radius internal properties
matter more than environment in determining star formation history.Comment: 17 pages, 9 figures, accepted by ApJ; resubmitted with updated
reference
Implementing a Reconciliation and Balancing Model in the U.s. Industry Accounts
As part of the U.S. Bureau of Economic Analysisâ integration initiative (Yuskavage, 2000; Moyer et al., 2004a, 2004b; Lawson et al., 2006), the Industry Accounts Directorate is drawing upon the Stone method (Stone et al., 1942) and Chen (2006) to reconcile the gross operating surplus component of value-added from the 2002 expenditure-based benchmark input-output accounts and the 2002 income-based gross domestic product-by-industry accounts. The objective of the reconciliation is to use information regarding the relative reliabilities of underlying data in both the benchmark input-output use table and the gross domestic product-by-industry accounts in a balanced input-output framework in order to improve intermediate input estimates and gross operating surplus estimates in both accounts. Given a balanced input-output framework, the Stone method also provides a tool for balancing the benchmark use table. This paper presents work by the Industry Accounts Directorate to develop and implement the reconciliation and balancing model. The paper provides overviews of the benchmark use table and gross domestic product-by-industry accounts, including features of external source data and adjustment methodologies that are relevant for the reconciliation. In addition, the paper presents the empirical model that the Industry Accounts Directorate is building and briefly describes the technology used to solve the model. Preliminary work during development of the model shows that reconciling and balancing a large system with disaggregated data is computationally feasible and efficient in pursuit of an economically accurate and reliable benchmark use table and gross domestic product-by-industry accounts.
- âŠ