1,348 research outputs found

    The effect of end-range cervical rotation on vertebral and internal carotid arterial blood flow and cerebral inflow: a sub analysis of an MRI study

    Get PDF
    Introduction: Cervical spine manual therapy has been associated with a small risk of serious adverse neurovascular events, particularly to the vertebral arteries. Sustained end-range rotation is recommended clinically as a pre-manipulative screening tool; however ultrasound studies have yielded conflicting results about the effect of rotation on blood flow in the vertebral arteries. There has been little research on internal carotid arterial flow or utilising the reference standard of angiography. Objectives: To evaluate the mean effect of cervical rotation on blood flow in the craniocervical arteries and blood supply to the brain, as well as individual variation. Design: This was an observational study. Method: Magnetic resonance angiography was used to measure average blood flow volume in the vertebral arteries, internal carotid arteries, and total cerebral inflow, in three neck positions: neutral, end-range left rotation and end-range right rotation in healthy adults. Results: Twenty participants were evaluated. There was a decrease in average blood flow volume in the vertebral and internal carotid arteries on contralateral rotation, compared to neutral. This was statistically significant on left rotation only. Ipsilateral rotation had no effect on average blood flow volume in any artery. Total cerebral inflow was not significantly affected by rotation in either direction. Conclusions: It appears that in healthy adults the cerebral vasculature can compensate for decreased flow in one or more arteries by increasing flow in other arteries, to maintain cerebral perfusion. Sustained end-range rotation may therefore reflect the compensatory capacity of the system as a whole rather than isolated vertebrobasilar function

    Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies.

    Get PDF
    BACKGROUND: Over the past decade malaria intervention coverage has been scaled up across Africa. However, it remains unclear what overall reduction in transmission is achievable using currently available tools. METHODS AND FINDINGS: We developed an individual-based simulation model for Plasmodium falciparum transmission in an African context incorporating the three major vector species (Anopheles gambiae s.s., An. arabiensis, and An. funestus) with parameters obtained by fitting to parasite prevalence data from 34 transmission settings across Africa. We incorporated the effect of the switch to artemisinin-combination therapy (ACT) and increasing coverage of long-lasting insecticide treated nets (LLINs) from the year 2000 onwards. We then explored the impact on transmission of continued roll-out of LLINs, additional rounds of indoor residual spraying (IRS), mass screening and treatment (MSAT), and a future RTS,S/AS01 vaccine in six representative settings with varying transmission intensity (as summarized by the annual entomological inoculation rate, EIR: 1 setting with low, 3 with moderate, and 2 with high EIRs), vector-species combinations, and patterns of seasonality. In all settings we considered a realistic target of 80% coverage of interventions. In the low-transmission setting (EIR approximately 3 ibppy [infectious bites per person per year]), LLINs have the potential to reduce malaria transmission to low levels (90%) or novel tools and/or substantial social improvements will be required, although considerable reductions in prevalence can be achieved with existing tools and realistic coverage levels. CONCLUSIONS: Interventions using current tools can result in major reductions in P. falciparum malaria transmission and the associated disease burden in Africa. Reduction to the 1% parasite prevalence threshold is possible in low- to moderate-transmission settings when vectors are primarily endophilic (indoor-resting), provided a comprehensive and sustained intervention program is achieved through roll-out of interventions. In high-transmission settings and those in which vectors are mainly exophilic (outdoor-resting), additional new tools that target exophagic (outdoor-biting), exophilic, and partly zoophagic mosquitoes will be required

    Near-field spectroscopy of Dirac plasmons in Bi2Se3 ribbon arrays

    Get PDF
    Plasmons supported in the massless electron surface states of topological insulators (TIs), known as Dirac plasmons, have great potential in next generation optoelectronics. However, their inherent confinement to the surface makes the investigation of Dirac plasmons challenging. Near-field techniques provide the ideal platform to directly probe Dirac plasmons due to the sensitivity to evanescent fields at the surface. Here, we demonstrate the use of aperture near-field spectroscopy for the investigation of localized terahertz (THz) Dirac plasmon resonances in Bi2Se3 ribbon arrays with widths ranging from 10 to 40 µm. Unlike scattering THz near-field techniques, the aperture method is most sensitive to plasmons with the relevant lower-momenta corresponding to plasmon wavelengths on the scale of ∼20 µm. The combination of THz time-domain spectroscopy and aperture near-field microscopy enables sampling of localized Dirac plasmons in the near-field zone in the 0.5–2.5 THz range. We map the plasmon dispersion, which reveals a coupled plasmon–phonon polariton interaction. The near-field spectra show a higher contrast of the upper polariton branch in comparison with far-field observations. The information revealed by aperture near-field spectroscopy could deepen our understanding of the behavior of Dirac plasmons, leading to the potential development of real-world TI devices

    Assessing the reliability of uptake and elimination kinetics modelling approaches for estimating bioconcentration factors in the freshwater invertebrate, Gammarus pulex

    Get PDF
    This study considers whether the current standard toxicokinetic methods are an accurate and applicable assessment of xenobiotic exposure in an aquatic freshwater invertebrate. An in vivo exposure examined the uptake and elimination kinetics for eight pharmaceutical compounds in the amphipod crustacean, Gammarus pulex by measuring their concentrations in both biological material and in the exposure medium over a 96 h period. Selected pharmaceuticals included two anti-inflammatories (diclofenac and ibuprofen), two beta-blockers (propranolol and metoprolol), an anti-depressant (imipramine), an anti-histamine (ranitidine) and two beta-agonists (formoterol and terbutaline). Kinetic bioconcentration factors (BCFs) for the selected pharmaceuticals were derived from a first-order one-compartment model using either the simultaneous or sequential modelling methods. Using the simultaneous method for parameter estimation, BCF values ranged from 12 to 212. In contrast, the sequential method for parameter estimation resulted in bioconcentration factors ranging from 19 to 4533. Observed toxicokinetic plots showed statistically significant lack-of-fits and further interrogation of the models revealed a decreasing trend in the uptake rate constant over time for rantidine, diclofenac, imipramine, metoprolol, formoterol and terbutaline. Previous published toxicokinetic data for 14 organic micro-pollutants were also assessed and similar trends were identified to those observed in this study. The decreasing trend of the uptake rate constant over time highlights the need to interpret modelled data more comprehensively to ensure uncertainties associated with uptake and elimination parameters for determining bioconcentration factors are minimised

    Time Dependent Monte Carlo Radiative Transfer Calculations For 3-Dimensional Supernova Spectra, Lightcurves, and Polarization

    Get PDF
    We discuss Monte-Carlo techniques for addressing the 3-dimensional time-dependent radiative transfer problem in rapidly expanding supernova atmospheres. The transfer code SEDONA has been developed to calculate the lightcurves, spectra, and polarization of aspherical supernova models. From the onset of free-expansion in the supernova ejecta, SEDONA solves the radiative transfer problem self-consistently, including a detailed treatment of gamma-ray transfer from radioactive decay and with a radiative equilibrium solution of the temperature structure. Line fluorescence processes can also be treated directly. No free parameters need be adjusted in the radiative transfer calculation, providing a direct link between multi-dimensional hydrodynamical explosion models and observations. We describe the computational techniques applied in SEDONA, and verify the code by comparison to existing calculations. We find that convergence of the Monte Carlo method is rapid and stable even for complicated multi-dimensional configurations. We also investigate the accuracy of a few commonly applied approximations in supernova transfer, namely the stationarity approximation and the two-level atom expansion opacity formalism.Comment: 16 pages, ApJ accepte

    The immunology of type 1 diabetes

    Get PDF
    Following the seminal discovery of insulin a century ago, treatment of individuals with type 1 diabetes (T1D) has been largely restricted to efforts to monitor and treat metabolic glucose dysregulation. The recent regulatory approval of the first immunotherapy that targets T cells as a means to delay the autoimmune destruction of pancreatic β-cells highlights the critical role of the immune system in disease pathogenesis and tends to pave the way for other immune-targeted interventions for T1D. Improving the efficacy of such interventions across the natural history of the disease will probably require a more detailed understanding of the immunobiology of T1D, as well as technologies to monitor residual β-cell mass and function. Here we provide an overview of the immune mechanisms that underpin the pathogenesis of T1D, with a particular emphasis on T cells

    Evidence of an advantage in visuo-spatial memory for bilingual compared to monolingual speakers

    Get PDF
    Previous research has indicated that bilinguals outperform monolinguals in cognitive tasks involving spatial working memory. The present study examines evidence for this claim using a different and arguably more ecologically valid method (the change blindness task). Bilingual and monolingual participants were presented with two versions of the same scenes and required to press a key as soon as they identified the alteration. They also completed the word and alpha span tasks, and the Corsi blocks task. The results in the change blindness task, controlled for group differences in non-verbal reasoning, indicated that bilinguals were faster and more accurate than monolinguals at detecting visual changes. Similar group differences were found on the Corsi block task. Unlike previous findings, no group differences were found on the verbal memory tasks. The results are discussed with reference to mechanisms of cognitive control as a locus of transfer between bilingualism and spatial working memory tasks
    • …
    corecore