355 research outputs found

    Bioengineered Lysozyme Reduces Bacterial Burden and Inflammation in a Murine Model of Mucoid Pseudomonas aeruginosa Lung Infection

    Get PDF
    The spread of drug-resistant bacterial pathogens is a growing global concern and has prompted an effort to explore potential adjuvant and alternative therapies derived from nature\u27s repertoire of bactericidal proteins and peptides. In humans, the airway surface liquid layer is a rich source of antibiotics, and lysozyme represents one of the most abundant and effective antimicrobial components of airway secretions. Human lysozyme is active against both Gram-positive and Gram-negative bacteria, a

    HDAC I Inhibition in the Dorsal and Ventral Hippocampus Differentially Modulates Predator-Odor Fear Learning and Generalization

    Get PDF
    Although predator odors are ethologically relevant stimuli for rodents, the molecular pathways and contribution of some brain regions involved in predator odor conditioning remain elusive. Inhibition of histone deacetylases (HDACs) in the dorsal hippocampus has been shown to enhance shock-induced contextual fear learning, but it is unknown if HDACs have differential effects along the dorso-ventral hippocampal axis during predator odor fear learning. We injected MS-275, a class I HDAC inhibitor, bilaterally in the dorsal or ventral hippocampus of mice and found that it had no effects on innate anxiety in either region. We then assessed the effects of MS-275 at different stages of fear learning along the longitudinal hippocampal axis. Animals were injected with MS-275 or vehicle after context pre-exposure (pre-conditioning injections), when a representation of the context is first formed, or after exposure to coyote urine (post-conditioning injections), when the context becomes associated with predator odor. When MS-275 was administered after context pre-exposure, dorsally injected animals showed enhanced fear in the training context but were able to discriminate it from a neutral environment. Conversely, ventrally injected animals did not display enhanced learning in the training context but generalized the fear response to a neutral context. However, when MS-275 was administered after conditioning, there were no differences between the MS-275 and vehicle control groups in either the dorsal or ventral hippocampus. Surprisingly, all groups displayed generalization to a neutral context, suggesting that predator odor exposure followed by a mild stressor such as restraint leads to fear generalization. These results may elucidate distinct functions of the dorsal and ventral hippocampus in predator odor-induced fear conditioning as well as some of the molecular mechanisms underlying fear generalization

    Low dose influenza virus challenge in the ferret leads to increased virus shedding and greater sensitivity to oseltamivir

    Get PDF
    Ferrets are widely used to study human influenza virus infection. Their airway physiology and cell receptor distribution makes them ideal for the analysis of pathogenesis and virus transmission, and for testing the efficacy of anti-influenza interventions and vaccines. The 2009 pandemic influenza virus (H1N1pdm09) induces mild to moderate respiratory disease in infected ferrets, following inoculation with 106 plaque-forming units (pfu) of virus. We have demonstrated that reducing the challenge dose to 102 pfu delays the onset of clinical signs by 1 day, and results in a modest reduction in clinical signs, and a less rapid nasal cavity innate immune response. There was also a delay in virus production in the upper respiratory tract, this was up to 9-fold greater and virus shedding was prolonged. Progression of infection to the lower respiratory tract was not noticeably delayed by the reduction in virus challenge. A dose of 104 pfu gave an infection that was intermediate between those of the 106 pfu and 102 pfu doses. To address the hypothesis that using a more authentic low challenge dose would facilitate a more sensitive model for antiviral efficacy, we used the well-known neuraminidase inhibitor, oseltamivir. Oseltamivir-treated and untreated ferrets were challenged with high (106 pfu) and low (102 pfu) doses of influenza H1N1pdm09 virus. The low dose treated ferrets showed significant delays in innate immune response and virus shedding, delayed onset of pathological changes in the nasal cavity, and reduced pathological changes and viral RNA load in the lung, relative to untreated ferrets. Importantly, these observations were not seen in treated animals when the high dose challenge was used. In summary, low dose challenge gives a disease that more closely parallels the disease parameters of human influenza infection, and provides an improved pre-clinical model for the assessment of influenza therapeutics, and potentially, influenza vaccines

    Sub-percent Photometry: Faint DA White Dwarf Spectophotometric Standards for Astrophysical Observatories

    Get PDF
    We have established a network of 19 faint (16.5 mag <V<< V < 19 mag) northern and equatorial DA white dwarfs as spectrophotometric standards for present and future wide-field observatories. Our analysis infers SED models for the stars that are tied to the three CALSPEC primary standards. Our SED models are consistent with panchromatic Hubble Space Telescope (HSTHST) photometry to better than 1%. The excellent agreement between observations and models validates the use of non-local-thermodynamic-equilibrium (NLTE) DA white dwarf atmospheres extinguished by interstellar dust as accurate spectrophotometric references. Our standards are accessible from both hemispheres and suitable for ground and space-based observatories covering the ultraviolet to the near infrared. The high-precision of these faint sources make our network of standards ideally suited for any experiment that has very stringent requirements on flux calibration, such as studies of dark energy using the Large Synoptic Survey Telescope (LSST) and the Wide-Field Infrared Survey Telescope (WFIRSTWFIRST).Comment: 46 pages, 23 figures, 8 tables, accepted for publication in ApJ

    Skeletal muscle ferritin abundance is tightly related to plasma ferritin concentration in adults with obesity

    Full text link
    Obesity is associated with complex perturbations to whole- body and tissue iron homeostasis. Recent evidence suggests a potentially important influence of iron storage in skeletal muscle on whole- body iron homeostasis, but this association is not clearly resolved. The primary aim of this study was to assess the relationship between whole- body and skeletal muscle iron stores by measuring the abundance of the key iron storage (ferritin) and import (transferrin receptor) proteins in skeletal muscle, as well as markers of whole- body iron homeostasis in men (n = 19) and women (n = 43) with obesity. Plasma ferritin concentration (a marker of whole- body iron stores) was highly correlated with muscle ferritin abundance (r = 0.77, P = 2 à  10- 13) and negatively associated with muscle transferrin receptor abundance (r = - 0.76, P = 1 à  10- 12). These relationships persisted when accounting for sex, age, BMI and plasma C- reactive protein concentration. In parallel with higher whole- body iron stores in our male versus female participants, men had 2.2- fold higher muscle ferritin abundance (P = 1 à  10- 4) compared with women. In accordance with lower muscle iron storage, women had 2.7- fold higher transferrin receptor abundance (P = 7 à  10- 10) compared with men. We conclude that muscle iron storage and import proteins are tightly and independently related to plasma ferritin concentration in adults with obesity, suggesting that skeletal muscle may be an underappreciated iron store.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163407/2/eph12853_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163407/1/eph12853.pd

    The apicoplast link to fever-survival and artemisinin-resistance in the malaria parasite.

    Get PDF
    The emergence and spread of Plasmodium falciparum parasites resistant to front-line antimalarial artemisinin-combination therapies (ACT) threatens to erase the considerable gains against the disease of the last decade. Here, we develop a large-scale phenotypic screening pipeline and use it to carry out a large-scale forward-genetic phenotype screen in P. falciparum to identify genes allowing parasites to survive febrile temperatures. Screening identifies more than 200 P. falciparum mutants with differential responses to increased temperature. These mutants are more likely to be sensitive to artemisinin derivatives as well as to heightened oxidative stress. Major processes critical for P. falciparum tolerance to febrile temperatures and artemisinin include highly essential, conserved pathways associated with protein-folding, heat shock and proteasome-mediated degradation, and unexpectedly, isoprenoid biosynthesis, which originated from the ancestral genome of the parasite's algal endosymbiont-derived plastid, the apicoplast. Apicoplast-targeted genes in general are upregulated in response to heat shock, as are other Plasmodium genes with orthologs in plant and algal genomes. Plasmodium falciparum parasites appear to exploit their innate febrile-response mechanisms to mediate resistance to artemisinin. Both responses depend on endosymbiont-derived genes in the parasite's genome, suggesting a link to the evolutionary origins of Plasmodium parasites in free-living ancestors

    ᴅ-Mannose for prevention of recurrent urinary tract infection among women: a randomized clinical trial

    Get PDF
    Importance: Recurrent urinary tract infection (UTI) is a common debilitating condition in women, with limited prophylactic options. d-Mannose has shown promise in trials based in secondary care, but effectiveness in placebo-controlled studies and community settings has not been established. Objective: To determine whether d-mannose taken for 6 months reduces the proportion of women with recurrent UTI experiencing a medically attended UTI. Design, Setting, and Participants: This 2-group, double-blind randomized placebo-controlled trial took place across 99 primary care centers in the UK. Participants were recruited between March 28, 2019, and January 31, 2020, with 6 months of follow-up. Participants were female, 18 years or older, living in the community, and had evidence in their primary care record of consultations for at least 2 UTIs in the preceding 6 months or 3 UTIs in 12 months. Invitation to participate was made by their primary care center. A total of 7591 participants were approached, 830 responded, and 232 were ineligible or did not proceed to randomization. Statistical analysis was reported in December 2022. Intervention: Two grams daily of d-mannose powder or matched volume of placebo powder. Main Outcomes and Measures: The primary outcome measure was the proportion of women experiencing at least 1 further episode of clinically suspected UTI for which they contacted ambulatory care within 6 months of study entry. Secondary outcomes included symptom duration, antibiotic use, time to next medically attended UTI, number of suspected UTIs, and UTI-related hospital admissions. Results: Of 598 women eligible (mean [range] age, 58 [18-93] years), 303 were randomized to d-mannose (50.7%) and 295 to placebo (49.3%). Primary outcome data were available for 583 participants (97.5%). The proportion contacting ambulatory care with a clinically suspected UTI was 150 of 294 (51.0%) in the d-mannose group and 161 of 289 (55.7%) in the placebo group (risk difference, −5%; 95% CI, −13% to 3%; P = .26). Estimates were similar in per protocol analyses, imputation analyses, and preplanned subgroups. There were no statistically significant differences in any secondary outcome measures. Conclusions and Relevance: In this randomized clinical trial, daily d-mannose did not reduce the proportion of women with recurrent UTI in primary care who experienced a subsequent clinically suspected UTI. d-Mannose should not be recommended for prophylaxis in this patient group. Trial Registration: isrctn.org Identifier: ISRCTN1328351

    On-demand cell-autonomous gene therapy for brain circuit disorders

    Get PDF
    Several neurodevelopmental and neuropsychiatric disorders are characterized by intermittent episodes of pathological activity. Although genetic therapies offer the ability to modulate neuronal excitability, a limiting factor is that they do not discriminate between neurons involved in circuit pathologies and “healthy” surrounding or intermingled neurons. We describe a gene therapy strategy that down-regulates the excitability of overactive neurons in closed loop, which we tested in models of epilepsy. We used an immediate early gene promoter to drive the expression of Kv1.1 potassium channels specifically in hyperactive neurons, and only for as long as they exhibit abnormal activity. Neuronal excitability was reduced by seizure-related activity, leading to a persistent antiepileptic effect without interfering with normal behaviors. Activity-dependent gene therapy is a promising on-demand cell-autonomous treatment for brain circuit disorders
    corecore