265 research outputs found

    Disentangling genetic and environmental influences on early language development: The interplay of genetic propensity for negative emotionality and surgency, and parenting behavior effects on early language skills in an adoption study

    Get PDF
    Parenting and children's temperament are important influences on language development. However, temperament may reflect prior parenting, and parenting effects may reflect genes common to parents and children. In 561 U.S. adoptees (57% male) and their birth and rearing parents (70% and 92% White, 13% and 4% African American, and 7% and 2% Latinx, respectively), this study demonstrated how genetic propensity for temperament affects language development, and how this relates to parenting. Genetic propensity for negative emotionality inversely predicted language at 27 months (β = −.15) and evoked greater maternal warmth (β = .12), whereas propensity for surgency positively predicted language at 4.5 years (β = .20), especially when warmth was low. Parental warmth (β = .15) and sensitivity (β = .19) further contributed to language development, controlling for common gene effects

    TGF-β-induced IOP elevations are mediated by RhoA in the early but not the late fibrotic phase of open angle glaucoma

    Get PDF
    Purpose: Elevations in intraocular pressure (IOP) are associated with the development of glaucoma and loss of sight. High transforming growth factor-β (TGF-β) 1 levels in the eye’s anterior chamber can lead to dysfunctional contractions through RhoA signaling in trabecular meshwork (TM) cells and IOP spikes. Sustained high TGF-β levels leads to TM fibrosis and sustained increases in IOP. We investigated whether inhibiting RhoA, using a siRNA-mediated RhoA (siRhoA), controls IOP by altering TM expression of fibrosis and contractility-related proteins in a rodent model of glaucoma. Methods: TGF-β was injected intracamerally twice a week into adult Sprague Dawley rats, and IOP was recorded with tonometry. Animals were euthanized on day 7 and 35 with TM expression of fibrosis and contractility-related proteins, as well as survival of retinal ganglion cells (RGCs) assessed with immunohistochemistry. siRNA against RhoA or enhanced green fluorescent protein (EGFP) was also injected intracamerally into select animals. Successful RhoA knockdown was determined with quantitative reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry, and the effects of the knockdown on the parameters above analyzed. Results: TGF-β caused increased TM contractile proteins and IOP spikes by day 7, sustained increases in IOP from day 15, and TM fibrosis at day 35. siRhoA abolished the transient 7 day IOP rise but not the later sustained IOP increase (due to fibrosis). At 35 days, TGF-β-related RGC loss was not prevented with siRhoA treatment. Conclusions: We conclude that RhoA signaling mediates the early IOP rise induced by TM cellular changes associated with contractility but not the sustained IOP elevation caused by TM fibrosis. Thus, RhoA therapies offer a clinically relevant opportunity for IOP management, likely through the modulation of TM contractility, but appear to be ineffective in the amelioration of fibrosis

    Neurocognitive function in HIV infected patients on antiretroviral therapy

    Get PDF
    OBJECTIVE To describe factors associated with neurocognitive (NC) function in HIV-positive patients on stable combination antiretroviral therapy. DESIGN We undertook a cross-sectional analysis assessing NC data obtained at baseline in patients entering the Protease-Inhibitor-Monotherapy-Versus-Ongoing-Triple therapy (PIVOT) trial. MAIN OUTCOME MEASURE NC testing comprised of 5 domains. Raw results were z-transformed using standard and demographically adjusted normative datasets (ND). Global z-scores (NPZ-5) were derived from averaging the 5 domains and percentage of subjects with test scores >1 standard deviation (SD) below population means in at least two domains (abnormal Frascati score) calculated. Patient characteristics associated with NC results were assessed using multivariable linear regression. RESULTS Of the 587 patients in PIVOT, 557 had full NC results and were included. 77% were male, 68% Caucasian and 28% of Black ethnicity. Mean (SD) baseline and nadir CD4+ lymphocyte counts were 553(217) and 177(117) cells/µL, respectively, and HIV RNA was <50 copies/mL in all. Median (IQR) NPZ-5 score was -0.5 (-1.2/-0) overall, and -0.3 (-0.7/0.1) and -1.4 (-2/-0.8) in subjects of Caucasian and Black ethnicity, respectively. Abnormal Frascati scores using the standard-ND were observed in 51%, 38%, and 81%, respectively, of subjects overall, Caucasian and Black ethnicity (p<0.001), but in 62% and 69% of Caucasian and Black subjects using demographically adjusted-ND (p = 0.20). In the multivariate analysis, only Black ethnicity was associated with poorer NPZ-5 scores (P<0.001). CONCLUSIONS In this large group of HIV-infected subjects with viral load suppression, ethnicity but not HIV-disease factors is closely associated with NC results. The prevalence of abnormal results is highly dependent on control datasets utilised. TRIAL REGISTRY ClinicalTrials.gov, NCT01230580

    TGF-beta-induced IOP elevations are mediated by RhoA in the early but not the late fibrotic phase of open angle glaucoma

    Get PDF
    Purpose: Elevations in intraocular pressure (IOP) are associated with the development of glaucoma and loss of sight. High transforming growth factor-β (TGF-β) 1 levels in the eye’s anterior chamber can lead to dysfunctional contractions through RhoA signaling in trabecular meshwork (TM) cells and IOP spikes. Sustained high TGF-β levels leads to TM fibrosis and sustained increases in IOP. We investigated whether inhibiting RhoA, using a siRNA-mediated RhoA (siRhoA), controls IOP by altering TM expression of fibrosis and contractility-related proteins in a rodent model of glaucoma. Methods: TGF-β was injected intracamerally twice a week into adult Sprague Dawley rats, and IOP was recorded with tonometry. Animals were euthanized on day 7 and 35 with TM expression of fibrosis and contractility-related proteins, as well as survival of retinal ganglion cells (RGCs) assessed with immunohistochemistry. siRNA against RhoA or enhanced green fluorescent protein (EGFP) was also injected intracamerally into select animals. Successful RhoA knockdown was determined with quantitative reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry, and the effects of the knockdown on the parameters above analyzed. Results: TGF-β caused increased TM contractile proteins and IOP spikes by day 7, sustained increases in IOP from day 15, and TM fibrosis at day 35. siRhoA abolished the transient 7 day IOP rise but not the later sustained IOP increase (due to fibrosis). At 35 days, TGF-β-related RGC loss was not prevented with siRhoA treatment. Conclusions: We conclude that RhoA signaling mediates the early IOP rise induced by TM cellular changes associated with contractility but not the sustained IOP elevation caused by TM fibrosis. Thus, RhoA therapies offer a clinically relevant opportunity for IOP management, likely through the modulation of TM contractility, but appear to be ineffective in the amelioration of fibrosis

    TGF-beta-induced IOP elevations are mediated by RhoA in the early but not the late fibrotic phase of open angle glaucoma

    Get PDF
    Purpose: Elevations in intraocular pressure (IOP) are associated with the development of glaucoma and loss of sight. High transforming growth factor-β (TGF-β) 1 levels in the eye’s anterior chamber can lead to dysfunctional contractions through RhoA signaling in trabecular meshwork (TM) cells and IOP spikes. Sustained high TGF-β levels leads to TM fibrosis and sustained increases in IOP. We investigated whether inhibiting RhoA, using a siRNA-mediated RhoA (siRhoA), controls IOP by altering TM expression of fibrosis and contractility-related proteins in a rodent model of glaucoma. Methods: TGF-β was injected intracamerally twice a week into adult Sprague Dawley rats, and IOP was recorded with tonometry. Animals were euthanized on day 7 and 35 with TM expression of fibrosis and contractility-related proteins, as well as survival of retinal ganglion cells (RGCs) assessed with immunohistochemistry. siRNA against RhoA or enhanced green fluorescent protein (EGFP) was also injected intracamerally into select animals. Successful RhoA knockdown was determined with quantitative reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry, and the effects of the knockdown on the parameters above analyzed. Results: TGF-β caused increased TM contractile proteins and IOP spikes by day 7, sustained increases in IOP from day 15, and TM fibrosis at day 35. siRhoA abolished the transient 7 day IOP rise but not the later sustained IOP increase (due to fibrosis). At 35 days, TGF-β-related RGC loss was not prevented with siRhoA treatment. Conclusions: We conclude that RhoA signaling mediates the early IOP rise induced by TM cellular changes associated with contractility but not the sustained IOP elevation caused by TM fibrosis. Thus, RhoA therapies offer a clinically relevant opportunity for IOP management, likely through the modulation of TM contractility, but appear to be ineffective in the amelioration of fibrosis

    Triazole-derivatized near-infrared cyanine dyes enable local functional fluorescent imaging of ocular inflammation

    Get PDF
    Near-infrared (NIR) chemical fluorophores are promising tools for in-vivo imaging in real time but often succumb to rapid photodegradation. Indocyanine green (ICG) is the only NIR dye with regulatory approval for ocular imaging in humans; however, ICG, when employed for applications such as labelling immune cells, has limited sensitivity and does not allow precise detection of specific inflammatory events, for example leukocyte recruitment during uveitic flare-ups. We investigated the potential use of photostable novel triazole NIR cyanine (TNC) dyes for detecting and characterising activated T-cell activity within the eye. Three TNC dyes were evaluated for ocular cytotoxicity in-vitro using a MTT assay and optimised concentrations for intraocular detection within ex-vivo porcine eyes after topical application or intracameral injections of the dyes. TNC labelled T-cell tracking experiments and mechanistic studies were also performed in-vitro. TNC-1 and TNC-2 dyes exhibited greater fluorescence intensity than ICG at 10 μM, whereas TNC-3 was only detectable at 100 μM within the porcine eye. TNC dyes did not demonstrate any ocular cell toxicity at working concentrations of 10 μM. CD4+T-cells labelled with TNC-1 or TNC-2 were detected within the porcine eye, with TNC-1 being brighter than TNC-2. Detection of TNC-1 and TNC-2 into CD4+T-cells was prevented by prior incubation with dynole 34-2 (50 μM), suggesting active uptake of these dyes via dynamin-dependent processes. The present study provides evidence that TNC dyes are suitable to detect activated CD4+T-cells within the eye with potential as a diagnostic marker for ocular inflammatory diseases

    The Mechanism of Flecainide Action in CPVT Does Not Involve a Direct Effect on RyR2

    Get PDF
    Rationale: Flecainide, a class 1c antiarrhythmic, has emerged as an effective therapy in preventing arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT) refractory to β-adrenergic receptor blockade. It has been proposed that the clinical efficacy of flecainide in CPVT is because of the combined actions of direct blockade of ryanodine receptors (RyR2) and Na+ channel inhibition. However, there is presently no direct evidence to support the notion that flecainide blocks RyR2 Ca2+ flux in the physiologically relevant (luminal-to-cytoplasmic) direction. The mechanism of flecainide action remains controversial. Objective: To examine, in detail, the effect of flecainide on the human RyR2 channel and to establish whether the direct blockade of physiologically relevant RyR2 ion flow by the drug contributes to its therapeutic efficacy in the clinical management of CPVT. Methods and Results: Using single-channel analysis, we show that, even at supraphysiological concentrations, flecainide did not inhibit the physiologically relevant, luminal-to-cytosolic flux of cations through the channel. Moreover, flecainide did not alter RyR2 channel gating and had negligible effect on the mechanisms responsible for the sarcoplasmic reticulum charge-compensating counter current. Using permeabilized cardiac myocytes to eliminate any contribution of plasmalemmal Na+ channels to the observed actions of the drug at the cellular level, flecainide did not inhibit RyR2-dependent sarcoplasmic reticulum Ca2+ release. Conclusions: The principal action of flecainide in CPVT is not via a direct interaction with RyR2. Our data support a model of flecainide action in which Na+-dependent modulation of intracellular Ca2+ handling attenuates RyR2 dysfunction in CPVT
    corecore