551 research outputs found
Remote measurement of salinity: Repeated measurements over a single flight line near the Mississippi Sound
Experiments to remotely determine sea water salinity from measurements of the sea surface radiometric temperature over the Mississippi Sound were conducted. The line was flown six times at an altitude of 244 meters. The radiometric temperature of the sea surface was measured in two spectral intervals. The specifications of the equipment and the conditions under which the tests were conducted are described. Results of the tests are presented in the form of graphs
Remote sensing of salinity
The complex dielectric constant of sea water is a function of salinity at 21 cm wavelength, and sea water salinity can be determined by a measurement of emissivity at 21 cm along with a measurement of thermodynamic temperature. Three aircraft and one helicopter experiments using two different 21 cm radiometers were conducted under different salinity and temperature conditions. Single or multiple ground truth measurements were used to calibrate the data in each experiment. It is inferred from these experiments that accuracies of 1 to 2%/OO are possible with a single surface calibration point necessary only every two hours if the following conditions are met--water temperatures above 20 C, salinities above 10%/OO, and level plane flight. More frequent calibration, constraint of the aircraft's orientation to the same as it was during calibration, and two point calibration (at a high and low salinity level) rather than single point calibration may give even better accuracies in some instances
Testing of a technique for remotely measuring water salinity in an estuarine environment
An aircraft experiment was flown on November 7, 1973 to test a technique for remote water salinity measurement. Apparent temperatures at 21 cm and 8-14 micron wavelengths were recorded on eight runs over a line along which the salinity varied from 5 to 30%. Boat measurements were used for calibration and accuracy calculations. Overall RMS accuracy over the complete range of salinities was 3.6%. Overall RMS accuracy for salinities greater than 10%, where the technique is more sensitive, was 2.6%. Much of this error is believed to be due to inability to exactly locate boat and aircraft positions. The standard deviation over the eight runs for salinities or = 10% is 1.4%; this error contains a component due to mislocation of the aircraft also. It is believed that operational use of the technique is possible with accuracies of 1-2%
An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity
We present an implicit-explicit well-balanced finite volume scheme for the Euler equations with a gravitational source term which is able to deal also with low Mach flows. To visualize the different scales we use the non-dimensionalized equations on which we apply a pressure splitting and a Suliciu relaxation. On the resulting model, we apply a splitting of the flux into a linear implicit and an non-linear explicit part that leads to a scale independent time-step. The explicit step consists of a Godunov type method based on an approximative Riemann solver where the source term is included in the flux formulation. We develop the method for a first order scheme and give an extension to second order. Both schemes are designed to be well-balanced, preserve the positivity of density and internal energy and have a scale independent diffusion. We give the low Mach limit equations for well-prepared data and show that the scheme is asymptotic preserving. These properties are numerically validated by various test cases
AnAll Speed SecondOrder IMEXRelaxation Scheme for the Euler Equations
We present an implicit-explicit finite volume scheme for the Euler equations. We start from the non-dimensionalised Euler equations where we split the pressure in a slow and a fast acoustic part. We use a Suliciu type relaxation model which we split in an explicit part, solved using a Godunov-type scheme based on an approximate Riemann solver, and an implicit part where we solve an elliptic equation for the fast pressure. The relaxation source terms are treated projecting the solution on the equilibrium manifold. The proposed scheme is positivity preserving with respect to the density and internal energy and asymptotic preserving towards the incompressible Euler equations. For this first order scheme we give a second order extension which maintains the positivity property. We perform numerical experiments in 1D and 2D to show the applicability of the proposed splitting and give convergence results for the second order extension
Space-charge mechanism of aging in ferroelectrics: an exactly solvable two-dimensional model
A mechanism of point defect migration triggered by local depolarization
fields is shown to explain some still inexplicable features of aging in
acceptor doped ferroelectrics. A drift-diffusion model of the coupled charged
defect transport and electrostatic field relaxation within a two-dimensional
domain configuration is treated numerically and analytically. Numerical results
are given for the emerging internal bias field of about 1 kV/mm which levels
off at dopant concentrations well below 1 mol%; the fact, long ago known
experimentally but still not explained. For higher defect concentrations a
closed solution of the model equations in the drift approximation as well as an
explicit formula for the internal bias field is derived revealing the plausible
time, temperature and concentration dependencies of aging. The results are
compared to those due to the mechanism of orientational reordering of defect
dipoles.Comment: 8 pages, 4 figures. accepted to Physical Review
Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment
International audienceCold atmospheric plasma is thought to be a promising tool for numerous biomedical applications due to its ability to generate a large diversity of reactive species in a controlled way. In some cases, it can also generate pulsed electric fields at the zone of treatment, which can induce processes such as electroporation in cell membranes. However, the interaction of these reactive species and the pulse electric field with cells in a physiological medium is very complex and still need a better understanding in order to be useful for future applications. A way to reach this goal is to work with model cell membranes such as liposomes, with the simplest physiological liquid and in a controlled atmosphere in order to limit the number of parallel reactions and processes. In this work, where this approach has been chosen, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) small unilamellar vesicles (SUV) has been synthesized in phosphate buffered aqueous solution and this solution has been treated by a nanosecond pulsed plasma jet under a pure nitrogen atmosphere. Only the composition of the plasma gas has been changed in order to generate different cocktails of reactive species. After the quantification of the main plasma reactive species in the PBS solution, structural, surface charge state, and chemical modifications generated on the plasma treated liposomes, due to the interaction with the plasma reactive species, has been carefully characterized. These results allow going further in the understanding of the effect of plasma reactive species on model cell membranes in physiological liquids. Permeation through the liposomal membrane and reaction of plasma reactive species with molecules encapsulated inside the liposomes has also been evaluated. New processes of degradation are finally presented and discussed, which come from the specific conditions of plasma treatment under pure nitrogen atmosphere
Internal states of model isotropic granular packings. III. Elastic properties
In this third and final paper of a series, elastic properties of numerically
simulated isotropic packings of spherical beads assembled by different
procedures and subjected to a varying confining pressure P are investigated. In
addition P, which determines the stiffness of contacts by Hertz's law, elastic
moduli are chiefly sensitive to the coordination number, the possible values of
which are not necessarily correlated with the density. Comparisons of numerical
and experimental results for glass beads in the 10kPa-10MPa range reveal
similar differences between dry samples compacted by vibrations and lubricated
packings. The greater stiffness of the latter, in spite of their lower density,
can hence be attributed to a larger coordination number. Voigt and Reuss bounds
bracket bulk modulus B accurately, but simple estimation schemes fail for shear
modulus G, especially in poorly coordinated configurations under low P.
Tenuous, fragile networks respond differently to changes in load direction, as
compared to load intensity. The shear modulus, in poorly coordinated packings,
tends to vary proportionally to the degree of force indeterminacy per unit
volume. The elastic range extends to small strain intervals, in agreement with
experimental observations. The origins of nonelastic response are discussed. We
conclude that elastic moduli provide access to mechanically important
information about coordination numbers, which escape direct measurement
techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page
- …