11 research outputs found

    Identification of proteins involved in neural progenitor cell targeting of gliomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastoma are highly aggressive tumors with an average survival time of 12 months with currently available treatment. We have previously shown that specific embryonic neural progenitor cells (NPC) have the potential to target glioma growth in the CNS of rats. The neural progenitor cell treatment can cure approximately 40% of the animals with malignant gliomas with no trace of a tumor burden 6 months after finishing the experiment. Furthermore, the NPCs have been shown to respond to signals from the tumor environment resulting in specific migration towards the tumor. Based on these results we wanted to investigate what factors could influence the growth and progression of gliomas in our rodent model.</p> <p>Methods</p> <p>Using microarrays we screened for candidate genes involved in the functional mechanism of tumor inhibition by comparing glioma cell lines to neural progenitor cells with or without anti-tumor activity. The expression of candidate genes was confirmed at RNA level by quantitative RT-PCR and at the protein level by Western blots and immunocytochemistry. Moreover, we have developed <it>in vitro </it>assays to mimic the antitumor effect seen <it>in vivo</it>.</p> <p>Results</p> <p>We identified several targets involved in glioma growth and migration, specifically CXCL1, CD81, TPT1, Gas6 and AXL proteins. We further showed that follistatin secretion from the NPC has the potential to decrease tumor proliferation. <it>In vitro </it>co-cultures of NPC and tumor cells resulted in the inhibition of tumor growth. The addition of antibodies against proteins selected by gene and protein expression analysis either increased or decreased the proliferation rate of the glioma cell lines <it>in vitro</it>.</p> <p>Conclusion</p> <p>These results suggest that these identified factors might be useful starting points for performing future experiments directed towards a potential therapy against malignant gliomas.</p

    Instructive cross-talk between neural progenitor cells and gliomas.

    No full text
    Gliomas are the most common primary brain tumors and offer a poor prognosis in patients because of their infiltrative and treatment-resistant nature. The median survival time after diagnosis is approximately 11-12 months. There is a strong need for novel treatment modalities in targeting gliomas, and recent advances use neural progenitor cells as delivery systems for different therapeutic strategies. In this study, we show that rat embryonic neural progenitor cell (NPC) lines, transplanted at a distant site from a 3-day-preestablished glioma in the striatum, were able to migrate toward and colocalize with tumor isles without general spread into the brain parenchyma. Upon encounter with tumor, neural progenitor cells changed phenotype and became vimentin positive. These results demonstrate that transplanted neural progenitor cells respond to queues from a tumor and home to and exert an antitumor effect on the preestablished glioma, significantly decreasing the tumor volume with approximately 67% compared with control tumors after 1-2 weeks. Moreover, these early effects could be translated into increased survival times of animals treated with neural progenitor cell grafts 3 days after intrastriatal tumor inoculation. In contrast, there was no activation or migration of endogenous subventricular zone (SVZ) neuroblasts in response to an intrastriatal syngeneic tumor. In conclusion, NPC possess the ability to influence tumor growth as well as respond to queues from the tumor or tumor microenvironment, demonstrating a cross-talk between the cells. (c) 2007 Wiley-Liss, Inc

    Impaired APP activity and altered Tau splicing in embryonic stem cell-derived astrocytes obtained from an APPsw transgenic minipig

    No full text
    Animal models of familial juvenile onset of Alzheimer's disease (AD) often fail to produce diverse pathological features of the disease by modification of single gene mutations that are responsible for the disease. They can hence be poor models for testing and development of novel drugs. Here, we analyze in vitro-produced stem cells and their derivatives from a large mammalian model of the disease created by overexpression of a single mutant human gene (APPsw). We produced hemizygous and homozygous radial glial-like cells following culture and differentiation of embryonic stem cells (ESCs) isolated from embryos obtained from mated hemizygous minipigs. These cells were confirmed to co-express varying neural markers, including NES, GFAP and BLBP, typical of type one radial glial cells (RGs) from the subgranular zone. These cells had altered expression of CCND1 and NOTCH1 and decreased expression of several ribosomal RNA genes. We found that these cells were able to differentiate into astrocytes upon directed differentiation. The astrocytes produced had decreased α- and β-secretase activity, increased γ-secretase activity and altered splicing of tau. This indicates novel aspects of early onset mechanisms related to cell renewal and function in familial AD astrocytes. These outcomes also highlight that radial glia could be a potentially useful population of cells for drug discovery, and that altered APP expression and altered tau phosphorylation can be detected in an in vitro model of the disease. Finally, it might be possible to use large mammal models to model familial AD by insertion of only a single mutation

    Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria

    No full text
    Antimicrobial peptides (AMPs) and proteins are important components of innate immunity against pathogens in insects. The production of AMPs is costly owing to resource-based trade-offs, and strategies maximizing the efficacy of AMPs at low concentrations are therefore likely to be advantageous. Here, we show the potentiating functional interaction of co-occurring insect AMPs (the bumblebee linear peptides hymenoptaecin and abaecin) resulting in more potent antimicrobial effects at low concentrations. Abaecin displayed no detectable activity against Escherichia coli when tested alone at concentrations of up to 200 μM, whereas hymenoptaecin affected bacterial cell growth and viability but only at concentrations greater than 2 μM. In combination, as little as 1.25 μM abaecin enhanced the bactericidal effects of hymenoptaecin. To understand these potentiating functional interactions, we investigated their mechanisms of action using atomic force microscopy and fluorescence resonance energy transfer-based quenching assays. Abaecin was found to reduce the minimal inhibitory concentration of hymenoptaecin and to interact with the bacterial chaperone DnaK (an evolutionarily conserved central organizer of the bacterial chaperone network) when the membrane was compromised by hymenoptaecin. These naturally occurring potentiating interactions suggest that combinations of AMPs could be used therapeutically against Gram-negative bacterial pathogens that have acquired resistance to common antibiotics

    Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria

    No full text
    Antimicrobial peptides (AMPs) and proteins are important components of innate immunity against pathogens in insects. The production of AMPs is costly owing to resource-based trade-offs, and strategies maximizing the efficacy of AMPs at low concentrations are therefore likely to be advantageous. Here, we show the potentiating functional interaction of co-occurring insect AMPs (the bumblebee linear peptides hymenoptaecin and abaecin) resulting in more potent antimicrobial effects at low concentrations. Abaecin displayed no detectable activity against Escherichia coli when tested alone at concentrations of up to 200 μM, whereas hymenoptaecin affected bacterial cell growth and viability but only at concentrations greater than 2 μM. In combination, as little as 1.25 μM abaecin enhanced the bactericidal effects of hymenoptaecin. To understand these potentiating functional interactions, we investigated their mechanisms of action using atomic force microscopy and fluorescence resonance energy transfer-based quenching assays. Abaecin was found to reduce the minimal inhibitory concentration of hymenoptaecin and to interact with the bacterial chaperone DnaK (an evolutionarily conserved central organizer of the bacterial chaperone network) when the membrane was compromised by hymenoptaecin. These naturally occurring potentiating interactions suggest that combinations of AMPs could be used therapeutically against Gram-negative bacterial pathogens that have acquired resistance to common antibiotics.ISSN:0080-4649ISSN:0950-1193ISSN:1471-2954ISSN:0962-845

    Highly Sensitive Protein Detection Based on Lanthanide Chelates with Antenna Ligands Providing a Linear Range of Five Orders of Magnitude

    No full text
    Protein detection is an important task for pharmaceutical and clinical research today. Numerous protein staining techniques exist but are limited regarding their sensitivity and often narrow linear quantification ranges. To the best of our knowledge, this is the first description of a novel class of lanthanide chelatators, which absorb in the lower energy region at 360 nm. The new compound (6,9-dicarboxymethyl-3-{4-([1,10]-phenanthrol-2-ylethinylphenyl-carbamoyl)-methyl}-3,6,9-triaza-)-undeca-1,11-dicarboxylic acid) was coupled to different proteins and showed highly sensitive protein detection limits in both sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (1.5 fmol of bovine serum albumin) as well as Dot Blot (100 amol of lysozyme). Furthermore, the novel compound shows an exceptionally broad linear quantification range over 5 orders of magnitude allowing applications that require the highest sensitivity alongside standard sensitivity. In addition, the new compound offers multiplexing capabilities
    corecore