24 research outputs found

    Genetic Diversity and Population Structure in Bryophyte With Facultative Nannandry

    No full text
    Among plants, gender dimorphism occurs in about 10% of all angiosperms and more than 50% of all moss taxa, with dwarf males (DM) found exclusively in some unisexual mosses. In this study, we explore the role of male dwarfism as a reproductive strategy in the widespread acrocarpous moss Dicranum scoparium, which has facultative male dwarfism, having both dwarf males (DMs) and normal-sized males (NMs). We retrieved 119 SNP markers from transcriptomes which were used to genotype 403 samples from 11 sites at seven localities in southern Sweden. Our aims were to compare the genetic variability and genetic structure of sexually reproducing populations at different geographic levels (cushion, site, and locality) and compare in particular the relative contribution of females, dwarf males and normal-sized males to the observed genetic diversity. The numbers of DMs differed strongly between sites, but when present, they usually outnumbered both females and NMs. Low genetic differentiation was found at locality level. Genetic differentiation was strongest between cushions for females and NMs and within cushions for DMs indicating small scale structuring and sometimes inbreeding. NMs were more clonal than either DMs or females. Genetic diversity was similar between females and DMs, but lower for NMs. Two haplotypes were shared between females and DMs and one haplotype was shared between a DM and a NM. In conclusion, our results show that DMs and NMs play different roles in reproduction, inbreeding may occur at cushion level, but gene flow is high enough to prevent substantial genetic drift

    Schizophyllum commune has an extensive and functional alternative splicing repertoire

    No full text
    Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regions (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically

    Schizophyllum commune has an extensive and functional alternative splicing repertoire

    No full text
    Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regions (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically

    Relationship between classic indicators of health behaviour and contraceptive choices in women in Flanders

    No full text
    Abstract: Background In this study we shed light on ongoing trends in contraceptive use in Flanders (Belgium). Building on the fundamental cause theory and social diffusion of innovation theory, we examine socio-economic gradients in contraceptive use and the relationship to health behaviours. Methods Using the unique and recently collected (2020) ISALA data, we used multinomial logistic regression to model the uptake of contraceptives and its association to educational level and health behaviour (N:4316 women). Results Higher educated women, and women with a healthy lifestyle especially, tend to use non-hormonal contraceptives or perceived lower-dosage hormonal contraceptives that are still trustworthy from a medical point of view. Moreover, we identified a potentially vulnerable group in terms of health as our results indicate that women who do not engage in preventive health behaviours are more likely to use no, or no modern, contraceptive method. Discussion The fact that higher educated women and women with a healthy lifestyle are less likely to use hormonal contraceptive methods is in line with patient empowerment, as women no longer necessarily follow recommendations by healthcare professionals, and there is a growing demand for naturalness in Western societies. Conclusion The results of this study can therefore be used to inform policy makers and reproductive healthcare professionals, since up-to-date understanding of women\u2019s contraceptive choices is clearly needed in order to develop effective strategies to prevent sexually transmitted infections and unplanned pregnancies, and in which women can take control over their sexuality and fertility in a comfortable and pleasurable way

    Transcription factors of Schizophyllum commune involved in mushroom formation and modulation of vegetative growth

    No full text
    Mushrooms are the most conspicuous fungal structures. Transcription factors (TFs) Bri1 and Hom1 of the model fungus Schizophyllum commune are involved in late stages of mushroom development, while Wc-2, Hom2, and Fst4 function early in development. Here, it is shown that Bri1 and Hom1 also stimulate vegetative growth, while biomass formation is repressed by Wc-2, Hom2, and Fst4. The Δbri1Δbri1 and the Δhom1Δhom1 strains formed up to 0.6 fold less biomass when compared to wild-type, while Δwc-2Δwc-2, Δhom2Δhom2, and Δfst4Δfst4 strains formed up to 2.8 fold more biomass. Inactivation of TF gene tea1, which was downregulated in the Δwc-2Δwc-2, Δhom2Δhom2, and Δfst4Δfst4 strains, resulted in a strain that was severely affected in mushroom development and that produced 1.3 fold more biomass than the wild-type. In contrast, introducing a constitutive active version of hom2 that had 4 predicted phosphorylation motifs eliminated resulted in radial growth inhibition and prompt fructification in both Δhom2 and wild-type strains, even in sterile monokaryons. Together, it is concluded that TFs involved in mushroom formation also modulate vegetative growth. Among these TFs is the homeodomain protein Hom2, being the first time that this class of regulatory proteins is implicated in repression of vegetative growth in a eukaryote
    corecore