58 research outputs found

    Experimental and theoretical comparison of spatially resolved laser-induced incandescence (LII) signals of soot in backward and right-angle configuration

    Get PDF
    In-situ measurements of soot volume fraction in the exhausts of jet engines can be carried out using the laser-induced incandescence (LII) technique in backward configuration, in which the signal is detected in the opposite direction of the laser beam propagation. In order to improve backward LII for quantitative measurements, we have in this work made a detailed experimental and theoretical investigation in which backward LII has been compared with the more commonly used right-angle LII technique. Both configurations were used in simultaneous visualization experiments at various pulse energies and gate timings in a stabilized methane diffusion flame. The spatial near-Gaussian laser energy distribution was monitored on-line as well as the time-resolved LII signal. A heat and mass transfer model for soot particles exposed to laser radiation was used to theoretically predict both the temporal and spatial LII signals. Comparison between experimental and theoretical LII signals indicates similar general behaviour, for example the broadening of the spatial LII distribution and the hole-burning effect at centre of the beam due to sublimation for increasing laser pulse energies. However, our comparison also indicates that the current heat and mass transfer model overpredicts signal intensities at higher fluence, and possible reasons for this behaviour are discussed

    Original use of a direct injection high efficiency nebulizer for the standardization of liquid fuels spray flames

    No full text
    International audienceIt is of practical importance to lead laboratory-scale experiments allowing a better understanding of the impact of commercial fuels composition on the formation of combustion residues such as soot particles. To this end, a hybrid burner has been designed recently to burn high-speed sprays of small liquid fuel droplets. It consists of a Holthui

    Influence of soot aggregate size and internal multiple scattering on LII signal and the absorption function variation with wavelength determined by the TEW-LII method

    No full text
    WOS:000354703800006International audienceLaser-induced incandescence (LII) is a powerful and robust optical method for in situ determination of soot volume fraction and/or soot absorption/emission properties in flames and engine exhaust. The laser-induced signal is interpreted as thermal emission based on the Planck law. Up to now, the evaluation and interpretation of LII signal have been largely based on contributions from isolated primary particles that are assumed much smaller than wavelengths. In the present paper, the morphology, wavelength, and aggregate size-dependent effects of multiple scattering within fractal soot aggregates on their absorption and emission cross sections are taken into account in the evaluation of LII signal by proposing correction terms to the traditional model. The impact of accounting for the correction to soot aggregate emission due to multiple scattering on LII signal and on the two excitation wavelength-induced incandescence method for inferring the soot absorption function, E(m), is discussed. For wavelengths shorter than 532 nm, E(m, lambda)/E(m, 1064 nm) increases more significantly with decreasing wavelength. For wavelengths longer than 532 nm, the wavelength dependence of E(m, lambda)/E(m, 1064 nm) becomes very small and can be neglected. The proposed corrections, along with the soot morphology, are applied to re-analyze the experimental data of Bejaoui et al. (Appl Phys B Lasers Opt, 116:313, 2014) for deriving the relative soot absorption function variation with wavelength at different locations in a rich premixed methane flat flame at atmospheric pressure. The present analysis showed that the soot absorption function varies with the height above the burner exit and can be correlated with the degree of soot maturation

    Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure

    No full text
    The potential of Laser Induced Fluorescence detection of the CH radical using C–X (0–0) excitation is investigated in a sooting methane/air diffusion flame at atmospheric pressure. Fluorescence is detected using the very narrow (<0.4 nm) Q-branch of the C–X (0–0) band, which enables the measurement of CH in sooting flames without interference from PAH fluorescence and soot emissions. Absolute concentrations are obtained using Cavity Ring Down Spectroscopy. 1D CH profiles in the sooting zone are recorded using a CCD camera with an excellent signal-to-noise ratio. The C–X (0–0) excitation associated with Q-branch detection is shown to be three times more efficient than the B–X scheme
    corecore