5 research outputs found

    An extended mtDNA phylogeography for the alpine newt illuminates the provenance of introduced populations

    Get PDF
    Many herpetofauna species have been introduced outside of their native range. MtDNA barcoding is regularly used to determine the provenance of such populations. The alpine newt has been introduced across the Netherlands, the United Kingdom and Ireland. However, geographical mtDNA structure across the natural range of the alpine newt is still incompletely understood and certain regions are severely undersampled. We collect mtDNA sequence data of over seven hundred individuals, from both the native and the introduced range. The main new insights from our extended mtDNA phylogeography are that 1) haplotypes from Spain do not form a reciprocally monophyletic clade, but are nested inside the mtDNA clade that covers western and eastern Europe; and 2) haplotypes from the northwest Balkans form a monophyletic clade together with those from the Southern Carpathians and Apuseni Mountains. We also home in on the regions where the distinct mtDNA clades meet in nature. We show that four out of the seven distinct mtDNA clades that comprise the alpine newt are implicated in the introductions in the Netherlands, United Kingdom and Ireland. In several introduced localities, two distinct mtDNA clades co-occur. As these mtDNA clades presumably represent cryptic species, we urge that the extent of genetic admixture between them is assessed from genome-wide nuclear DNA markers. We mobilized a large number of citizen scientists in this project to support the collection of DNA samples by skin swabbing and underscore the effectiveness of this sampling technique for mtDNA barcoding

    Defining Evolutionary Conservation Units in the Macedonian Crested Newt, <i>Triturus macedonicus</i> (Amphibia; Salamandridae), in a Biodiversity Hotspot

    No full text
    In this study, we used genetic approaches to assess the conservation status of a protected amphibian species, the Macedonian crested newt, Triturus macedonicus, in Northern Pindos National Park (Epirus, Greece). Mitochondrial DNA sequences and multilocus genotypes of individuals from 38 breeding sites were used to infer their phylogenetic position and to detect and measure genetic variation patterns, population genetic structure, and levels of gene flow. The examined individuals fell within two major clades of the Macedonian crested newt phylogeny, being geographically separated by the Aoos River valley and Vikos Gorge. Both groups constitute separate gene pools, bearing private haplotypes and alleles, and the groups were found to be highly differentiated in both their mitochondrial and microsatellite markers. Thus, they meet all of the criteria needed to be characterized as evolutionary significant units (ESUs) that deserve a separate conservation status. Within each ESU, the particularly high inter-population differentiation and low migration rates imply a lack of connectivity between breeding sites and local isolation in favorable habitats. Our results can inform future programs and actions towards the conservation and management of the Macedonian crested newt in the area

    Extreme genetic depletion upon postglacial colonization hampers determining the provenance of introduced palmate newt populations

    Get PDF
    MtDNA barcoding is regularly applied to determine the provenance of invasive species. Variation in spatial genetic structuring across a species’ range, typically high within glacial refugia and low in postglacially colonized areas, influences the precision of this approach. The palmate newt (Lissotriton helveticus) has been introduced north of its native range inside the Netherlands. We conduct mtDNA barcoding to try and retrace the origin of the introduced localities. A large increase in sample size, particularly focusing on temperate Europe, emphasizes that the palmate newt shows practically no genetic variation outside the Iberian Peninsula glacial refugium. While we find a haplotype previously only known from the Iberian Peninsula inside the native range in Belgium, the haplotype present in the introduced Dutch populations occurs widely throughout the native range north of the Iberian Peninsula. Although mtDNA barcoding can be a powerful tool in invasion biology, the palmate newt case exposes its limitations

    Extreme genetic depletion upon postglacial colonization hampers determining the provenance of introduced palmate newt populations

    No full text
    Abstract MtDNA barcoding is regularly applied to determine the provenance of invasive species. Variation in spatial genetic structuring across a species’ range, typically high within glacial refugia and low in postglacially colonized areas, influences the precision of this approach. The palmate newt (Lissotriton helveticus) has been introduced north of its native range inside the Netherlands. We conduct mtDNA barcoding to try and retrace the origin of the introduced localities. A large increase in sample size, particularly focusing on temperate Europe, emphasizes that the palmate newt shows practically no genetic variation outside the Iberian Peninsula glacial refugium. While we find a haplotype previously only known from the Iberian Peninsula inside the native range in Belgium, the haplotype present in the introduced Dutch populations occurs widely throughout the native range north of the Iberian Peninsula. Although mtDNA barcoding can be a powerful tool in invasion biology, the palmate newt case exposes its limitations
    corecore