249 research outputs found

    Structure of bottle-brush brushes under good solvent conditions. A molecular dynamics study

    Full text link
    We report a simulation study for bottle-brush polymers grafted on a rigid backbone. Using a standard coarse-grained bead-spring model extensive molecular dynamics simulations for such macromolecules under good solvent conditions are performed. We consider a broad range of parameters and present numerical results for the monomer density profile, density of the untethered ends of the grafted flexible backbones and the correlation function describing the range that neighboring grafted bottle-brushes are affected by the presence of the others due to the excluded volume interactions. The end beads of the flexible backbones of the grafted bottle-brushes do not access the region close to the rigid backbone due to the presence of the side chains of the grafted bottle-brush polymers, which stretch further the chains in the radial directions. Although a number of different correlation lengths exist as a result of the complex structure of these macromolecules, their properties can be tuned with high accuracy in good solvents. Moreover, qualitative differences with "typical" bottle-brushes are discussed. Our results provide a first approach to characterizing such complex macromolecules with a standard bead spring model.Comment: To appear in Journal of Physics Condensed Matter (2011

    Phase behavior of symmetric linear multiblock copolymers

    Full text link
    Molecular dynamics simulations are used to study the phase behavior of a single linear multiblock copolymer with blocks of A- and B-type monomers under poor solvent conditions, varying the block length NN, number of blocks nn, and the solvent quality (by variation of the temperature TT). The fraction ff of A-type monomers is kept constant and equal to 0.5, and always the lengths of A and B blocks were equal (NA=NB=NN_{A}=N_{B}=N), as well as the number of blocks (nA=nB=nn_{A}=n_{B}=n). We identify the three following regimes where: (i) full microphase separation between blocks of different type occurs (all blocks of A-type monomers form a single cluster, while all blocks of B-type monomers form another), (ii) full microphase separation is observed with a certain probability, and (iii) full microphase separation can not take place. For very high number of blocks nn and very high NN (not accessible to our simulations) further investigation is needed.Comment: 5 pages, 4 figures, to be published in Europhys. Let

    Universality from disorder in the random-bond Blume-Capel model

    Get PDF
    Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large crystal-field coupling is softened to become continuous, with a divergent correlation length. An analysis of the scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the universality class of the Ising model with additional logarithmic corrections observed for the Ising model itself if coupled to weak disorder. While the leading scaling behavior in the disordered system is therefore identical between the second-order and first-order segments of the phase diagram of the pure model, the finite-size scaling in the ex-first-order regime is affected by strong transient effects with a crossover length scale L∗≈32L^{\ast} \approx 32 for the chosen parameters

    Mesophase formation in two-component cylindrical bottle-brush polymers

    Full text link
    When two types of side chains (A,B) are densely grafted to a (stiff) backbone and the resulting bottle-brush polymer is in a solution under poor solvent conditions, an incompatibility between A and B leads to microphase separation in the resulting cylindrical brush. The possible types of ordering are reminiscent of the ordering of block copolymers in cylindrical confinement. Starting from this analogy, Leibler's theory of microphase separation in block copolymer melts is generalized to derive a description of the system in the weak segregation limit. Also molecular dynamics simulation results of a corresponding coarse-grained bead-spring model are presented. Using side chain lengths up to N = 50 effective monomers, the ratio of the Lennard-Jones energy parameter between unlike monomers (ϵAB)(\epsilon_{AB}) and monomers of the same kind (ϵAA=ϵBB)(\epsilon _{AA} = \epsilon_{BB}) is varied. Various correlation functions are analyzed to study the conditions when (local) Janus cylinder-type ordering and when (local) microphase separation in the direction along the cylinder axis occurs. Both the analytical theory and the simulations give evidence for short range order due to a tendency towards microphase separation in the axial direction, with a wavelength proportional to the side chain gyration radius, irrespective of temperature and grafting density, for a wide range of these parameters.Comment: 26 pages, 19 figure

    Interfacial adsorption in two-dimensional pure and random-bond Potts models

    Get PDF
    We study using Monte Carlo simulations the finite-size scaling behavior of the interfacial adsorption of the two-dimensional square-lattice qq-states Potts model. We consider the pure and random-bond versions of the Potts model for q=3,4,5,8q = 3,4,5,8 and q=10q = 10, thus probing the interfacial properties at the originally continuous, weak, and strong first-order phase transitions. For the pure systems our results support the early scaling predictions for the size dependence of the interfacial adsorption at both first- and second-order phase transitions. For the disordered systems, the interfacial adsorption at the (disordered induced) continuous transitions is discussed, applying standard scaling arguments and invoking findings for bulk critical properties. The self-averaging properties of the interfacial adsorption are also analyzed by studying the infinite limit-size extrapolation of properly defined signal-to-noise ratios.Comment: 7 pages, 5 figures, final version to be published in Phys. Rev. E. arXiv admin note: text overlap with arXiv:1504.0742

    Bose-Einstein condensates in standing waves: The cubic nonlinear Schroedinger equation with a periodic potential

    Full text link
    We present a new family of stationary solutions to the cubic nonlinear Schroedinger equation with a Jacobian elliptic function potential. In the limit of a sinusoidal potential our solutions model a dilute gas Bose-Einstein condensate trapped in a standing light wave. Provided the ratio of the height of the variations of the condensate to its DC offset is small enough, both trivial phase and nontrivial phase solutions are shown to be stable. Numerical simulations suggest such stationary states are experimentally observable.Comment: 4 pages, 4 figure

    Enhanced erythrocyte antioxidant status following an 8-week aerobic exercise training program in heavy drinkers

    Get PDF
    © 2017 Elsevier Inc. Alcohol-induced oxidative stress is involved in the development and progression of various pathological conditions and diseases. On the other hand, exercise training has been shown to improve redox status, thus attenuating oxidative stress-associated disease processes. The purpose of the present study was to evaluate the effect of an exercise training program that has been previously reported to decrease alcohol consumption on blood redox status in heavy drinkers. In a non-randomized within-subject design, 11 sedentary, heavily drinking men (age: 30.3 ± 3.5 years; BMI: 28.4 ± 0.86 kg/m2) participated first in a control condition for 4 weeks, and then in an intervention where they completed an 8-week supervised aerobic training program of moderate intensity (50–60% of the heart rate reserve). Blood samples were collected in the control condition (pre-, post-control) as well as before, during (week 4 of the training program), and after intervention (week 8 of the training program). Samples were analyzed for total antioxidant capacity (TAC), thiobarbituric acid reactive substances (TBARS), protein carbonyls (PC), uric acid (UA), bilirubin, reduced glutathione (GSH), and catalase activity. No significant change in indices of redox status in the pre- and post-control was observed. Catalase activity increased (p < 0.05) after 8 weeks of intervention compared to week 4. GSH increased (p < 0.05) after 8 weeks of intervention compared to the control condition and to week 4 of intervention. TAC, UA, bilirubin, TBARS, and PC did not significantly change at any time point. Moreover, concentrations of GSH, TBARS, and catalase activity negatively correlated with alcohol consumption. In conclusion, an 8-week aerobic training program enhanced erythrocyte antioxidant status in heavy drinkers, indicating that aerobic training may attenuate pathological processes caused by alcohol-induced oxidative stress.This study was co-financed by the European Union [European Social Fund (ESF)] and Greek national funds through the Operational Program ‘Education and Lifelong Learning’ of the National Strategic Reference Framework-Research Funding Program: THALES. Investing in knowledge society through the ESF.Published versio

    Superspreading: Mechanisms and Molecular Design

    Get PDF
    The intriguing ability of certain surfactant molecules to drive the superspreading of liquids to complete wetting on hydrophobic substrates is central to numerous applications that range from coating flow technology to enhanced oil recovery. Despite significant experimental efforts, the precise mechanisms underlying superspreading remain unknown to date. Here, we isolate these mechanisms by analyzing coarse-grained molecular dynamics simulations of surfactant molecules of varying molecular architecture and substrate affinity. We observe that for superspreading to occur, two key conditions must be simultaneously satisfied: the adsorption of surfactants from the liquid–vapor surface onto the three-phase contact line augmented by local bilayer formation. Crucially, this must be coordinated with the rapid replenishment of liquid–vapor and solid–liquid interfaces with surfactants from the interior of the droplet. This article also highlights and explores the differences between superspreading and conventional surfactants, paving the way for the design of molecular architectures tailored specifically for applications that rely on the control of wetting
    • …
    corecore