431 research outputs found

    Diagnostic and therapeutic challenges in the Allan-Herndon-Dudley Syndrome

    Get PDF
    Thyroid hormone (TH) is important for normal brain development. The TH transporter protein monocarboxylate transporter 8 (MCT8) is crucial to maintain adequate TH levels in the brain during development and throughout life. Mutations in MCT8 result in the Allan-Herndon-Dudley syndrome (AHDS), which is characterized by a severe delay in neurocognitive development, combined with abnormal serum thyroid function tests (TFTs). The combination of an increased (F)T3 and decreased (F)T4 and rT3 serum levels are characteristic for the presence of AHDS in male patients with moderate to severe delay in neurocognitive development. Here, we provide an overview of current insights, challenges and pitfalls in the diagnosis and management of patients with AHDS.</p

    Diagnostic and therapeutic challenges in the Allan-Herndon-Dudley Syndrome

    Get PDF
    Thyroid hormone (TH) is important for normal brain development. The TH transporter protein monocarboxylate transporter 8 (MCT8) is crucial to maintain adequate TH levels in the brain during development and throughout life. Mutations in MCT8 result in the Allan-Herndon-Dudley syndrome (AHDS), which is characterized by a severe delay in neurocognitive development, combined with abnormal serum thyroid function tests (TFTs). The combination of an increased (F)T3 and decreased (F)T4 and rT3 serum levels are characteristic for the presence of AHDS in male patients with moderate to severe delay in neurocognitive development. Here, we provide an overview of current insights, challenges and pitfalls in the diagnosis and management of patients with AHDS.</p

    Modulation by epidermal growth factor of the basal 1,25(OH)2D3 receptor level and the heterologous up-regulation of the 1,25(OH)2D3 receptor in clonal osteoblast-like cells

    Get PDF
    The effects of epidermal growth factor (EGF) on basal 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) receptor level and on parathyroid hormone (PTH)-induced 1,25-(OH)2D3 (OH)2D3 receptor up-regulation were studied in the phenotypically osteoblastic cell line UMR 106. EGF in concentrations exceeding 0.1 ng/ml reduced the number of 1,25(OH)2D3 binding sites without changing the binding affinity. Maximal reduction was 30% at about 1 ng/ml. This reduction was independent of a change in cAMP content. EGF dose-dependently attenuated both PTH-induced 1,25(OH)2D3 receptor up-regulation and PTH-stimulated cAMP production without and effect on the ED50 of the PTH effects. For both PTH responses the IC50 and the maximal effective dose were similar, 0.1 ng/ml an 1 ng/ml EGF, respectively. Reduction was first seen at 0.01 ng/ml EGF. At this concentration. EGF reduced PTH-stimulated 1,25-(OH)2D3 receptor binding without an inhibition of the cAMP response. Time-course studies with 1 ng/ml EGF revealed that at 2 h preincubation EGF reduced the heterologous up regulation by PTH, and maximal inhibition was seen after 4 h. In contrast, PTH-stimulated cAMP production was just significantly inhibited only after 6 h, with 60% inhibition after 24 h preincubation. The effects of prostaglandin E2 and forskolin on both 1,25(OH)2D3 binding and cAMP production were inhibited in a similar fashion. On the other hand, dibutyryl cAMP- and 3-isobutyl-1-methylxanthinestimulated 1,25(OH)2D3 binding were not affected by EGF. Taken together, our results demonstrate that EGF reduces both the basal number of 1,25(OH)2D3 binding sites and the heterologous up-regulation of the 1,25(OH)2D3 receptor. The current data suggest that EGF reduces heterologous upregulation of the 1,25(OH)2D3 receptor independent of as well as dependent on the cAMP messenger system. The EGF effect is not primarily located at the PTH receptor, at cAMP phosphodiesterase, or at protein kinase A level

    Annual patterns in phytoplankton phenology in Antarctic coastal waters explained by environmental drivers

    Get PDF
    Coastal zones of Antarctica harbor rich but highly variable phytoplankton communities. The mechanisms that control the dynamics of these communities are not well defined. Here we elucidate the mechanisms that drive seasonal species succession, based on algal photophysiological characteristics and environmental factors. For this, phytoplankton community structure together with oceanographic parameters was studied over a 5‐year period (2012–2017) at Rothera Station at Ryder Bay (Western Antarctic Peninsula). Algal pigment patterns and photophysiological studies based on fluorescence analyses were combined with data from the Rothera Time‐Series program. Considerable interannual variation was observed, related to variations in wind‐mixing, ice cover and an El Niño event. Clear patterns in the succession of algal classes became manifest when combining the data collected over the five successive years. In spring, autotrophic flagellates with a high light affinity were the first to profit from increasing light and sea ice melt. These algae most likely originated from sea‐ice communities, stressing the role of sea ice as a seeding vector for the spring bloom. Diatoms became dominant towards summer in more stratified and warmer surface waters. These communities displayed significantly lower photoflexibility than spring communities. There are strong indications for mixotrophy in cryptophytes, which would explain much of their apparently random occurrence. Climate models predict continuing retreat of Antarctic sea‐ice during the course of this century. For the near‐future we predict that the marginal sea‐ice zone will still harbor significant communities of haptophytes and chlorophytes, whereas increasing temperatures will mainly be beneficial for diatoms

    Uptake of triiodothyronine sulfate and suppression of thyrotropin secretion in cultured anterior pituitary cells

    Get PDF
    To investigate the uptake of triiodothyronine sulfate (T3S) and its effect on thyrotropin-releasing hormone (TRH)-induced thyrotropin (TSH) secretion, anterior pituitary cells were isolated from euthyroid rats and cultured for 3 days in medium containing 10% fetal calf serum. Incubation was performed at 37°C in medium containing 0.5% bovine serum albumin (BSA). Exposure of the pituitary cells to TRH (0.1 μmol/L) for 2 hours stimulated TSH secretion by 176%. This effect was reduced by approximately 45% after a 2-hour preincubation with T3 (0.001 to 1 μmol/L). A significant inhibitory effect of T3S on TRH-induced TSH release was only observed at a concentration of 1 μmol/L. The uptake of [125I]T3 after 1 hour of incubation was reduced by 40% ± 4% (P < .001) by simultaneous addition of 10 nmol/L unlabeled T3, whereas 1 μmol/L T3S was required to obtain a reduction of the [125I]T3 uptake by 34% ± 2% (P < .001). The amount of T3 present in the unlabeled T3S preparation was 0.25% as determined by radioimmunoassay. When pituitary cells were incubated for 1 hour with [125I]T3S or [125I]T3 both 50,000 cpm/0.25 mL), the uptake of [125I]T3zS expressed as a percentage of the dose was 0.04% ± 0.02% (mean ± SE, n = 4), whereas that of [125I]T3 amounted to 3.0% ± 0.4% (n = 4). In contrast, when hepatocytes were incubated for 1 hour with [125I]T3S, the uptake amounted to 5.1% ± 0.8% (n = 9), whereas that of [125I]T3 was 22.1% ± 1.7% (n = 9). Furthermore, [125I]T3S was as rapidly deiodinated (iodide production, 14.9% ± 2.6%; n = 9) as [125I]T3 (12.1% ± 0.8%, n = 9) by hepatocytes. It is concluded that (1) T3S is poorly taken up by pituitary cells, and (2) the suppressive effect of high concentrations of T3S on TRH-induced TSH secretion and on [125I]T3 uptake can be explained by slight contamination with T3. Thus, it appears that T3S has only a minor biological effect, if any, on the pituitary

    Fibrinolysis during liver transplantation is enhanced by using solvent/detergent virus-inactivated plasma (ESDEP)

    Get PDF
    After the introduction of solvent/detergent-treated plasma (ESDEP) in our hospital, an increased incidence of hyperfibrinolysis was observed (75% vs 29%; P = 0.005) compared with the use of fresh frozen plasma for liver transplantation. To clarify this increased incidence, intraoperative plasma samples of patients treated with fresh frozen plasma or ESDEP were analyzed in a retrospective observational study. During the anhepatic phase, plasma levels of D-dimer (6.58 vs 1.53 microg/mL; P = 0.02) and fibrinogen degradation products (60 vs 23 mg/L; P = 0.018) were significantly higher in patients treated with ESDEP. After reperfusion, differences increased to 23.5 vs 4.7 microg/mL (D-dimer, P = 0.002) and 161 vs 57 mg/L (fibrinogen degradation products, P = 0.001). The amount of plasma received per packed red blood cell concentrate, clotting tests, and levels of individual clotting factors did not show significant differences between the groups. alpha(2)-Antiplasmin levels, however, were significantly lower in patients receiving ESDEP during the anhepatic phase (0.37 vs 0.65 IU/mL; P < 0.001) and after reperfusion (0.27 vs 0.58 IU/mL; P = 0.001). Analysis of alpha(2)-antiplasmin levels in ESDEP alone showed a reduction to 0.28 IU/mL (normal >0.95 IU/mL) because of the solvent/detergent process. Therapeutic consequences for the use of ESDEP in orthotopic liver transplantation are discussed in view of an increased incidence of hyperfibrinolysis caused by reduced levels of alpha(2)-antiplasmin in the solvent/detergent-treated plasma. IMPLICATIONS: The use of solvent/detergent virus-inactivated plasma is of increasing importance in the prevention of human immunodeficiency virus and hepatitis C virus transmission. Since the use of this plasma during orthotopic liver transplantation has increased, the incidence of hyperfibrinolysis was observed. Clotting analysis of the patients revealed small alpha(2)-antiplasmin concentrations because of the solvent/detergent process

    Serum microRNA profiles in athyroid patients on and off levothyroxine therapy

    Get PDF
    BackgroundLevothyroxine replacement treatment in hypothyroidism is unable to restore physiological thyroxine and triiodothyronine concentrations in serum and tissues completely. Normal serum thyroid stimulating hormone (TSH) concentrations reflect only pituitary euthyroidism and, therefore, novel biomarkers representing tissue-specific thyroid state are needed. MicroRNAs (miRNAs), small non-coding regulatory RNAs, exhibit tissue-specific expression patterns and can be detectable in serum. Previous studies have demonstrated differential expression of (precursors of) miRNAs in tissues under the influence of thyroid hormone.ObjectiveTo study if serum miRNA profiles are changed in different thyroid states.Design and methodsWe studied 13 athyroid patients (6 males) during TSH suppressive therapy and after 4 weeks of thyroid hormone withdrawal. A magnetic bead capture system was used to isolate 384 defined miRNAs from serum. Subsequently, the TaqMan Array Card 3.0 platform was used for profiling after individual target amplification.ResultsMean age of the subjects was 44.0 years (range 20-61 years). Median TSH levels were 88.9 mU/I during levothyroxine withdrawal and 0.006 mU/I during LT4 treatment with a median dosage of 2.1 fag/kg. After normalization to allow inter-sample analysis, a paired analysis did not demonstrate a significant difference in expression of any of the 384 miRNAs analyzed on and off LT4 treatment.ConclusionAlthough we previously showed an up-regulation of pri-miRNAs 133b and 206 in hypothyroid state in skeletal muscle, the present study does not supply evidence that thyroid state also affects serum miRNAs in humans

    Genetic analysis of resistance to septoria tritici blotch in the French winter wheat cultivars Balance and Apache

    Get PDF
    The ascomycete Mycosphaerella graminicola is the causal agent of septoria tritici blotch (STB), one of the most destructive foliar diseases of bread and durum wheat globally, particularly in temperate humid areas. A screening of the French bread wheat cultivars Apache and Balance with 30 M. graminicola isolates revealed a pattern of resistant responses that suggested the presence of new genes for STB resistance. Quantitative trait loci (QTL) analysis of a doubled haploid (DH) population with five M. graminicola isolates in the seedling stage identified four QTLs on chromosomes 3AS, 1BS, 6DS and 7DS, and occasionally on 7DL. The QTL on chromosome 6DS flanked by SSR markers Xgpw5176 and Xgpw3087 is a novel QTL that now can be designated as Stb18. The QTLs on chromosomes 3AS and 1BS most likely represent Stb6 and Stb11, respectively, and the QTLs on chromosome 7DS are most probably identical with Stb4 and Stb5. However, the QTL identified on chromosome 7DL is expected to be a new Stb gene that still needs further characterization. Multiple isolates were used and show that not all isolates identify all QTLs, which clearly demonstrates the specificity in the M. graminicola–wheat pathosystem. QTL analyses were performed with various disease parameters. The development of asexual fructifications (pycnidia) in the characteristic necrotic blotches of STB, designated as parameter P, identified the maximum number of QTLs. All other parameters identified fewer but not different QTLs. The segregation of multiple QTLs in the Apache/Balance DH population enabled the identification of DH lines with single QTLs and multiple QTL combinations. Analyses of the marker data of these DH lines clearly demonstrated the positive effect of pyramiding QTLs to broaden resistance spectra as well as epistatic and additive interactions between these QTLs. Phenotyping of the Apache/Balance DH population in the field confirmed the presence of the QTLs that were identified in the seedling stage, but Stb18 was inconsistently expressed and might be particularly effective in young plants. In contrast, an additional QTL for STB resistance was identified on chromosome 2DS that is exclusively and consistently expressed in mature plants over locations and time, but it was also strongly related with earliness, tallness as well as resistance to Fusarium head blight. Although to date no Stb gene has been reported on chromosome 2D, the data provide evidence that this QTL is only indirectly related to STB resistance. This study shows that detailed genetic analysis of contemporary commercial bread wheat cultivars can unveil novel Stb genes that can be readily applied in marker-assisted breeding programs

    Left-Ventricular Remodeling After Myocardial Infarction Is Associated with a Cardiomyocyte-Specific Hypothyroid Condition

    Get PDF
    Abstract Similarities in cardiac gene expression in hypothyroidism and left ventricular (LV) pathological remodeling after myocardial infarction (MI) suggest a role for impaired cardiac thyroid hormone (TH) signaling in the development of heart failure. Increased ventricular activity of the TH-degrading enzyme type 3 deiodinase (D3) is recognized as a potential cause. In the present study, we investigated the cardiac expression and activity of D3 over an 8-wk period after MI in C57Bl/6J mice. Pathological remodeling of the noninfarcted part of the LV was evident from cardiomyocyte hypertrophy, interstitial fibrosis, and impairment of contractility. These changes were maximal and stable from the first week onward, as was the degree of LV dilation. A strong induction of D3 activity was found, which was similarly stable for the period examined. Plasma T4 levels were transiently decreased at 1 wk after MI, but T3 levels remained normal. The high D3 activity was associated with increased D3 mRNA expression at 1 but not at 4 and 8 wk after MI. Immunohistochemistry localized D3 protein to cardiomyocytes. In vivo measurement of TH-dependent transcription activity in cardiomyocytes using a luciferase reporter assay indicated a 48% decrease in post-MI mice relative to sham-operated animals, and this was associated with a 50% decrease in LV tissue T3 concentration. In conclusion, pathological ventricular remodeling after MI in the mouse leads to high and stable induction of D3 activity in cardiomyocytes and a local hypothyroid condition

    Changes in the central component of the hypothalamus-pituitary-thyroid axis in a rabbit model of prolonged critical illness

    Get PDF
    Introduction: Prolonged critically ill patients reveal low circulating thyroid hormone levels without a rise in thyroid stimulating hormone (TSH). This condition is labeled "low 3,5,3'-tri-iodothyronine (T3) syndrome" or "nonthyroidal illness syndrome (NTI)" or "euthyroid sick syndrome". Despite the low circulating and peripheral tissue thyroid hormone levels, thyrotropin releasing hormone (TRH) expression in the hypothalamus is reduced and it remains unclear which mechanism is responsible. We set out to study whether increased hypothalamic T3availability could reflect local thyrotoxicosis and explain feedback inhibition-induced suppression of the TRH gene in the context of the low T3syndrome in prolonged critical illness.Methods: Healthy rabbits were compared with prolonged critically ill, parenterally fed animals. We visualized TRH mRNA in the hypothalamus by in situ-hybridization and measured mRNA levels for the type II iodothyronine diodinase (D2), the thyroid hormone transporters monocarboxylate transporter (MCT) 8, MCT10 and organic anion co-transporting polypeptide 1C1 (OATP1C1) and the thyroid hormone receptors α (TRα) and β (TRβ) in the hypothalamus. We also measured the activity of the D2 and type III iodothyronine deiodinase (D3) enzymes.Results: In the hypothalamus of prolonged critically ill rabbits with low circulating T3 and TSH, we observed decreased TRH mRNA, increased D2 mRNA and increased MCT10 and OATP1C1 mRNA while MCT8 gene expression was unaltered as compared with healthy controls. This coincided with low hypothalamic thyroxine (T4) and low-normal T3concentrations, without a change at the thyroid hormone receptor level.Conclusions: Although expression of D2 and of the thyroid hormone transporters MCT10 and OATP1C1 were increased in the hypothalamus of prolonged critical ill animals, hypothalamic T4and T3content or thyroid hormone receptor expression were not elevated. Hence, decreased TRH gene expression, and hereby low TSH and T3 during prolonged critical illness, is not exclusively brought about by hypothalamic thyrotoxicosis, and infer other TRH suppressing factors to play a role
    corecore