14 research outputs found

    Midwest Macro Conference

    Get PDF
    Abstract This paper takes a fresh look into Africa's growth experience by using the Bayesian Model Averaging (BMA) methodology. BMA enables us to consider a large number of potential explanatory variables and sort out which of these variable can e¤ectively explain Africa's growth experience. Posterior coe¢ cient estimates reveal that key engines of growth in Africa are substantially di¤erent from those in the rest of the world. More precisely, it is shown that mining, primary exports and initial primary education exerted di¤erential e¤ect on African growth. These results are examined in relation to the existing literature. JEL Classi…cation: O40, O47. Keywords: Africa, growth determinants, model uncertainty, Bayesian Model Averaging (BMA). We thank the editor Steven Durlauf and an anonymous referee for valuable comments and suggestions. We also thank seminar participants a

    Influenza surveillance in 15 countries in Africa, 2006-2010

    Get PDF
    BACKGROUND: In response to the potential threat of an influenza pandemic, several international institutions and governments, in partnership with African countries, invested in the development of epidemiologic and laboratory influenza surveillance capacity in Africa. METHODS: We used a standardized form to collect information on influenza surveillance system characteristics, the number and percent of influenza-positive patients with influenza-like illness (ILI) or severe acute respiratory infections (SARI) and virologic data. RESULTS: Between 2006 and 2010, the number of ILI and SARI sites in 15 African countries increased from 21 to 127 and from 2 to 98, respectively. Influenza was detected in 22% of ILI cases and 10% of SARI cases. Children 0-4 years accounted for 48% all ILI and SARI cases of which 20% and 10 respectively were positive for influenza. Influenza peaks were generally discernible in North and South Africa. Substantial co-circulation of influenza A and B occurred most years. CONCLUSIONS: Influenza is a major cause of respiratory illness in Africa, especially in children. Further strengthening influenza surveillance, along with conducting special studies on influenza burden, cost of illness, and role of other respiratory pathogens will help detect novel influenza viruses and inform and develop targeted influenza prevention policy decisions in the region.The work presented in this manuscript was funded completely or in part by host governments, Institute Pasteur, and cooperative agreements with the U.S. Centers for Disease Control and Prevention and/or the U.S. Department of Defense.http://www.journals.uchicago.edu/toc/jid/currenthb2013ay201

    Global Role and Burden of Influenza in Pediatric Respiratory Hospitalizations, 1982-2012:A Systematic Analysis

    Get PDF
    BACKGROUND:The global burden of pediatric severe respiratory illness is substantial, and influenza viruses contribute to this burden. Systematic surveillance and testing for influenza among hospitalized children has expanded globally over the past decade. However, only a fraction of the data has been used to estimate influenza burden. In this analysis, we use surveillance data to provide an estimate of influenza-associated hospitalizations among children worldwide. METHODS AND FINDINGS:We aggregated data from a systematic review (n = 108) and surveillance platforms (n = 37) to calculate a pooled estimate of the proportion of samples collected from children hospitalized with respiratory illnesses and positive for influenza by age group (<6 mo, <1 y, <2 y, <5 y, 5-17 y, and <18 y). We applied this proportion to global estimates of acute lower respiratory infection hospitalizations among children aged <1 y and <5 y, to obtain the number and per capita rate of influenza-associated hospitalizations by geographic region and socio-economic status. Influenza was associated with 10% (95% CI 8%-11%) of respiratory hospitalizations in children <18 y worldwide, ranging from 5% (95% CI 3%-7%) among children <6 mo to 16% (95% CI 14%-20%) among children 5-17 y. On average, we estimated that influenza results in approximately 374,000 (95% CI 264,000 to 539,000) hospitalizations in children <1 y-of which 228,000 (95% CI 150,000 to 344,000) occur in children <6 mo-and 870,000 (95% CI 610,000 to 1,237,000) hospitalizations in children <5 y annually. Influenza-associated hospitalization rates were more than three times higher in developing countries than in industrialized countries (150/100,000 children/year versus 48/100,000). However, differences in hospitalization practices between settings are an important limitation in interpreting these findings. CONCLUSIONS:Influenza is an important contributor to respiratory hospitalizations among young children worldwide. Increasing influenza vaccination coverage among young children and pregnant women could reduce this burden and protect infants <6 mo

    Default Priors and Predictive Performance in Bayesian Model Averaging, with Application to Growth Determinants

    No full text
    Abstract Bayesian model averaging (BMA) has become widely accepted as a way of accounting for model uncertainty, notably in regression models for identifying the determinants of economic growth. To implement BMA the user must specify a prior distribution in two parts: a prior for the regression parameters and a prior over the model space. Here we address the issue of which default prior to use for BMA in linear regression. We compare 12 candidate parameter priors: the Unit Information Prior (UIP) corresponding to the BIC or Schwarz approximation to the integrated likelihood, a proper data-dependent prior, and 10 priors considered by Fernandez et al. (2001b). We also compare the uniform model prior to others that favor smaller models. We compare them on the basis of crossvalidated predictive performance on a well-known growth dataset and on two simulated examples from the literature. We found that the UIP with uniform model prior generally outperformed the other priors considered. It also identified the largest set of growth determinants. JEL Classification: O51, O52, O53
    corecore