44 research outputs found
Deficits in plasma oestradiol measurement in studies and management of breast cancer
The determination of plasma oestradiol has numerous applications in epidemiology, reproductive medicine and breast cancer management. Commercially available analytical methods, which measure the hormone levels without prior purification, have been successfully developed for measuring oestradiol in premenopausal women. The application of these methodologies to the quantification of the very low levels of oestradiol in postmenopausal women is more problematic in terms of accuracy and interpretation. The importance of using appropriate methodology is discussed and illustrated with data demonstrating the disparity in the results obtained when low levels of oestradiol were quantified using direct and indirect methods
Premenopausal endogenous oestrogen levels and breast cancer risk: a meta-analysis.
BACKGROUND: Many of the established risk factors for breast cancer implicate circulating hormone levels in the aetiology of the disease. Increased levels of postmenopausal endogenous oestradiol (E2) have been found to increase the risk of breast cancer, but no such association has been confirmed in premenopausal women. We carried out a meta-analysis to summarise the available evidence in women before the menopause. METHODS: We identified seven prospective studies of premenopausal endogenous E2 and breast cancer risk, including 693 breast cancer cases. From each study we extracted odds ratios of breast cancer between quantiles of endogenous E2, or for unit or s.d. increases in (log transformed) E2, or (where odds ratios were unavailable) summary statistics for the distributions of E2 in breast cancer cases and unaffected controls. Estimates for a doubling of endogenous E2 were obtained from these extracted estimates, and random-effect meta-analysis was used to obtain a pooled estimate across the studies. RESULTS: Overall, we found weak evidence of a positive association between circulating E2 levels and the risk of breast cancer, with a doubling of E2 associated with an odds ratio of 1.10 (95% CI: 0.96, 1.27). CONCLUSION: Our findings are consistent with the hypothesis of a positive association between premenopausal endogenous E2 and breast cancer risk
Towards an integrated model for breast cancer etiology: The lifelong interplay of genes, lifestyle, and hormones
While the association of a number of risk factors, such as family history and reproductive patterns, with breast cancer has been well established for many years, work in the past 10–15 years also has added substantially to our understanding of disease etiology. Contributions of particular note include the delineation of the role of endogenous and exogenous estrogens to breast cancer risk, and the discovery and quantification of risk associated with several gene mutations (e.g. BRCA1). Although it is difficult to integrate all epidemiologic data into a single biologic model, it is clear that several important components or pathways exist. Early life events probably determine both the number of susceptible breast cells at risk and whether mutations occur in these cells. High endogenous estrogens are well established as an important cause of breast cancer, and many known risk factors appear to operate through this pathway. Estrogens (and probably other growth factors) appear to accelerate the development of breast cancer at many points along the progression from early mutation to tumor metastasis, and appear to be influential at many points in a woman's life. These data now provide a basis for a number of strategies that can reduce risk of breast cancer, although some strategies represent complex decision-making. Together, the modification of nutritional and lifestyle risk factors and the judicious use of chemopreventive agents could have a major impact on breast cancer incidence. Further research is needed in many areas, but a few specific arenas are given particular mention
Effect of weight loss, with or without exercise, on body composition and sex hormones in postmenopausal women: the SHAPE-2 trial
Introduction
Physical inactivity and overweight are risk factors for postmenopausal breast cancer. The effect of physical activity may be partially mediated by concordant weight loss. We studied the effect on serum sex hormones, which are known to be associated with postmenopausal breast cancer risk, that is attributable to exercise by comparing randomly obtained equivalent weight loss by following a hypocaloric diet only or mainly by exercise.
Methods
Overweight, insufficiently active women were randomised to a diet (N = 97), mainly exercise (N = 98) or control group (N = 48). The goal of both interventions was to achieve 5–6 kg of weight loss by following a calorie-restricted diet or an intensive exercise programme combined with only a small caloric restriction. Primary outcomes after 16 weeks were serum sex hormones and sex hormone-binding globulin (SHBG). Body fat and lean mass were measured by dual-energy X-ray absorptiometry.
Results
Both the diet (−4.9 kg) and mainly exercise (−5.5 kg) groups achieved the target weight loss. Loss of body fat was significantly greater with exercise versus diet (difference −1.4 kg, P < 0.001). In the mainly exercise arm, the reduction in free testosterone was statistically significantly greater than that of the diet arm (treatment effect ratio [TER] 0.92, P = 0.043), and the results were suggestive of a difference for androstenedione (TER 0.90, P = 0.064) and SHBG (TER 1.05, P = 0.070). Compared with the control arm, beneficial effects were seen with both interventions, diet and mainly exercise, respectively, on oestradiol (TER 0.86, P = 0.025; TER 0.83, P = 0.007), free oestradiol (TER 0.80, P = 0.002; TER 0.77, P < 0.001), SHBG (TER 1.14; TER 1.21, both P < 0.001) and free testosterone (TER 0.91, P = 0.069; TER = 0.84, P = 0.001). After adjustment for changes in body fat, intervention effects attenuated or disappeared.
Conclusions
Weight loss with both interventions resulted in favourable effects on serum sex hormones, which have been shown to be associated with a decrease in postmenopausal breast cancer risk. Weight loss induced mainly by exercise additionally resulted in maintenance of lean mass, greater fitness, greater fat loss and a larger effect on (some) sex hormones. The greater fat loss likely explains the observed larger effects on sex hormone
Endogenous Sex Hormones and Breast Cancer in Postmenopausal Women: Reanalysis of Nine Prospective Studies
Оплата труда и стимулирование трудовой деятельности в организации ООО "ТСМ Ковчег"
Объект исследования в выпускной квалификационной работе – оплата труда и стимулирование трудовой деятельности ООО "ТСМ Ковчег".
Цель выпускной квалификационной работы заключается в разработке рекомендаций по совершенствованию системы оплаты труда и стимулирования трудовой деятельности в организации.
В целях решения поставленных в выпускной квалификационной работе задач, применялись методы познания: аналитический, структурный, системный и метод экономического анализа.
При проведении прикладного анализа выявилась возможность представить рекомендации по совершенствованию системы оплаты труда и стимулирования трудовой деятельности в организации ООО "ТСМ Ковчег".The object of research in the final qualifying work is payment for labor and stimulation of labor activity of LLC "TSM Kovcheg".
The purpose of the final qualifying work is to develop recommendations for improving the system of labor remuneration and stimulating work in the organization.
In order to solve the tasks set in the final qualifying work, methods of cognition were used: analytical, structural, system and method of economic analysis.
When carrying out applied analysis, it became possible to provide recommendations on improving the system of labor remuneration and stimulating work in the organization of LLC "TSM Kovcheg.
Breast density and polymorphisms in genes coding for CYP1A2 and COMT: the Multiethnic Cohort
BACKGROUND: Mammographic density is a strong predictor of breast cancer risk and is increased by hormone replacement therapy (HRT). Some associations with genetic polymorphisms in enzymes involved in estrogen metabolism have been described. This cross-sectional analysis examined the relation between mammographic density and the CYP1A2*1F and COMT Val(58 )Met polymorphisms among 332 breast cancer cases and 254 controls in the Hawaii component of the Multiethnic Cohort. METHODS: Mammographic density, before diagnosis in cases, was quantified by using a validated computer-assisted method. Blood samples were genotyped by standard PCR/RFLP methods. Adjusted mean percent density was calculated by genotype using mixed models with the unstructured covariance option. RESULTS: A positive association between the C allele in the CYP1A2*1F gene and percent density, but not the dense area, was suggested (p = 0.11). The relation was limited to controls (p = 0.045), postmenopausal women not using HRT (p = 0.08), and normal weight subjects (p = 0.046). We did not observe any relation between the COMT Val(58 )Met polymorphism and breast density. CONCLUSION: The lack of an association between the CYP1A2 genotype and the size of the dense areas suggests an effect on the non-dense, i.e., fatty breast tissue. The discrepancies among studies may be due to differential susceptibility; changes in enzyme activity as a result of the CYP1A2*1F polymorphism may influence breast tissue differently depending on hormonal status. Larger studies with the ability to look at interactions would be useful to elucidate the influence of genetic variation in CYP1A2 and COMT on the risk of developing breast cancer
Mammographic density and epithelial histopathologic markers
<p>Abstract</p> <p>Background</p> <p>We explored the association of mammographic density, a breast cancer risk factor, with hormonal and proliferation markers in benign tissue from tumor blocks of pre-and postmenopausal breast cancer cases.</p> <p>Methods</p> <p>Breast cancer cases were recruited from a case-control study on breast density. Mammographic density was assessed on digitized prediagnostic mammograms using a computer-assisted method. For 279 participants of the original study, we obtained tumor blocks and prepared tissue microarrays (TMA), but benign tissue cores were only available for 159 women. The TMAs were immunostained for estrogen receptor alpha (ERα) and beta (ERβ), progesterone receptor (PR), HER2/neu, Ki-67, and Proliferating Cell Nuclear Antigen (PCNA). We applied general linear models to compute breast density according to marker expression.</p> <p>Results</p> <p>A substantial proportion of the samples were in the low or no staining categories. None of the results was statistically significant, but women with PR and ERβ staining had 3.4% and 2.4% higher percent density. The respective values for Caucasians were 5.7% and 11.6% but less in Japanese women (3.5% and -1.1%). Percent density was 3.4% higher in women with any Ki-67 staining and 2.2% in those with positive PCNA staining.</p> <p>Conclusion</p> <p>This study detected little evidence for an association between mammographic density and expression of steroid receptors and proliferation markers in breast tissue, but it illustrated the problems of locating tumor blocks and benign breast tissue samples for epidemiologic research. Given the suggestive findings, future studies examining estrogen effects in tissue, cell proliferation, and density in the breast may be informative.</p
Radiation and breast cancer: a review of current evidence
This paper summarizes current knowledge on ionizing radiation-associated breast cancer in the context of established breast cancer risk factors, the radiation dose–response relationship, and modifiers of dose response, taking into account epidemiological studies and animal experiments. Available epidemiological data support a linear dose–response relationship down to doses as low as about 100 mSv. However, the magnitude of risk per unit dose depends strongly on when radiation exposure occurs: exposure before the age of 20 years carries the greatest risk. Other characteristics that may influence the magnitude of dose-specific risk include attained age (that is, age at observation for risk), age at first full-term birth, parity, and possibly a history of benign breast disease, exposure to radiation while pregnant, and genetic factors
Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and oxidative stress: a cross-sectional study
INTRODUCTION: Mammographically dense breast tissue is a strong predictor of breast cancer risk, and is influenced by both mitogens and mutagens. One enzyme that is able to affect both the mitogenic and mutagenic characteristics of estrogens is cytochrome P450 1A2 (CYP1A2), which is principally responsible for the metabolism of 17β-estradiol. METHODS: In a cross-sectional study of 146 premenopausal and 149 postmenopausal women, we examined the relationships between CYP1A2 activity, malondialdehyde (MDA) levels, and mammographic density. In vivo CYP1A2 activity was assessed by measuring caffeine metabolites in urine. Levels of serum and urinary MDA, and MDA–deoxyguanosine adducts in DNA were measured. Mammograms were digitized and measured using a computer-assisted method. RESULTS: CYP1A2 activity in postmenopausal women, but not in premenopausal women, was positively associated with mammographic density, suggesting that increased CYP1A2 activity after the menopause is a risk factor for breast cancer. In premenopausal women, but not in postmenopausal women, CYP1A2 activity was positively associated with serum and urinary MDA levels; there was also some evidence that CYP1A2 activity was more positively associated with percentage breast density when MDA levels were high, and more negatively associated with percentage breast density when MDA levels were low. CONCLUSION: These findings provide further evidence that variation in the activity level of enzymes involved in estrogen metabolism is related to levels of mammographic density and potentially to breast cancer risk
