551 research outputs found
Magnetic fields and Sunyaev-Zel'dovich effect in galaxy clusters
In this work we study the contribution of magnetic fields to the Sunyaev
Zeldovich (SZ) effect in the intracluster medium. In particular we calculate
the SZ angular power spectrum and the central temperature decrement. The effect
of magnetic fields is included in the hydrostatic equilibrium equation by
splitting the Lorentz force into two terms one being the force due to magnetic
pressure which acts outwards and the other being magnetic tension which acts
inwards. A perturbative approach is adopted to solve for the gas density
profile for weak magnetic fields (< 4 micro G}). This leads to an enhancement
of the gas density in the central regions for nearly radial magnetic field
configurations. Previous works had considered the force due to magnetic
pressure alone which is the case only for a special set of field
configurations. However, we see that there exists possible sets of
configurations of ICM magnetic fields where the force due to magnetic tension
will dominate. Subsequently, this effect is extrapolated for typical field
strengths (~ 10 micro G) and scaling arguments are used to estimate the angular
power due to secondary anisotropies at cluster scales. In particular we find
that it is possible to explain the excess power reported by CMB experiments
like CBI, BIMA, ACBAR at l > 2000 with sigma_8 ~ 0.8 (WMAP 5 year data) for
typical cluster magnetic fields. In addition we also see that the magnetic
field effect on the SZ temperature decrement is more pronounced for low mass
clusters ( ~ 2 keV). Future SZ detections of low mass clusters at few arc
second resolution will be able to probe this effect more precisely. Thus, it
will be instructive to explore the implications of this model in greater detail
in future works.Comment: 20 pages, 8 figure
T violation and the unidirectionality of time
An increasing number of experiments at the Belle, BNL, CERN, DA{\Phi}NE and
SLAC accelerators are confirming the violation of time reversal invariance (T).
The violation signifies a fundamental asymmetry between the past and future and
calls for a major shift in the way we think about time. Here we show that
processes which violate T symmetry induce destructive interference between
different paths that the universe can take through time. The interference
eliminates all paths except for two that represent continuously forwards and
continuously backwards time evolution. Evidence from the accelerator
experiments indicates which path the universe is effectively following. This
work may provide fresh insight into the long-standing problem of modeling the
dynamics of T violation processes. It suggests that T violation has previously
unknown, large-scale physical effects and that these effects underlie the
origin of the unidirectionality of time. It may have implications for the
Wheeler-DeWitt equation of canonical quantum gravity. Finally it provides a
view of the quantum nature of time itself.Comment: 24 pages, 5 figures. Final version accepted for publishing in
Foundations of Physics. The final publication is available at
http://www.springerlink.com/content/y3h4174jw2w78322
B-mode Detection with an Extended Planck Mission
The Planck satellite has a nominal mission lifetime of 14 months allowing two
complete surveys of the sky. Here we investigate the potential of an extended
Planck mission of four sky surveys to constrain primordial B-mode anisotropies
in the presence of dominant Galactic polarized foreground emission. An extended
Planck mission is capable of powerful constraints on primordial B-modes at low
multipoles, which cannot be probed by ground based or sub-orbital experiments.
A tensor-scalar ratio of r=0.05 can be detected at a high significance level by
an extended Planck mission and it should be possible to set a 95% upper limit
on r of 0.03 if the tensor-scalar ratio is vanishingly small. Furthermore,
extending the Planck mission to four sky surveys offers better control of
polarized Galactic dust emission, since the 217 GHz frequency band can be used
as an effective dust template in addition to the 353 GHz channel.Comment: 10 pages, 3 figure
Demonstrating the Feasibility of Line Intensity Mapping Using Mock Data of Galaxy Clustering from Simulations
Visbal & Loeb (2010) have shown that it is possible to measure the clustering
of galaxies by cross correlating the cumulative emission from two different
spectral lines which originate at the same redshift. Through this cross
correlation, one can study galaxies which are too faint to be individually
resolved. This technique, known as intensity mapping, is a promising probe of
the global properties of high redshift galaxies. Here, we test the feasibility
of such measurements with synthetic data generated from cosmological dark
matter simulations. We use a simple prescription for associating galaxies with
dark matter halos and create a realization of emitted radiation as a function
of angular position and wavelength over a patch of the sky. This is then used
to create synthetic data for two different hypothetical instruments, one aboard
the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) and another
consisting of a pair of ground based radio telescopes designed to measure the
CO(1-0) and CO(2-1) emission lines. We find that the line cross power spectrum
can be measured accurately from the synthetic data with errors consistent with
the analytical prediction of Visbal & Loeb (2010). Removal of astronomical
backgrounds and masking bright line emission from foreground contaminating
galaxies do not prevent accurate cross power spectrum measurements.Comment: 12 pages, 6 figures, Submitted to JCA
Phenomenology of a Fluxed MSSM
We analyze the phenomenology of a set of minimal supersymmetric standard
model (MSSM) soft terms inspired by flux-induced supersymmetry (SUSY)-breaking
in Type IIB string orientifolds. The scheme is extremely constrained with
essentially only two free mass parameters: a parameter M, which sets the scale
of soft terms, and the mu parameter. After imposing consistent radiative
electro-weak symmetry breaking (EWSB) the model depends upon one mass parameter
(say, M). In spite of being so constrained one finds consistency with EWSB
conditions. We demonstrate that those conditions have two solutions for mu<0,
and none for mu>0. The parameter tan beta results as a prediction and is
approximately 3-5 for one solution, and 25-40 for the other, depending upon M
and the top mass. We examine further constraints on the model coming from b->s
gamma, the muon g-2, Higgs mass limits and WMAP constraints on dark matter. The
MSSM spectrum is predicted in terms of the single free parameter M. The low tan
beta branch is consistent with a relatively light spectrum although it is
compatible with standard cosmology only if the lightest neutralino is unstable.
The high tan beta branch is compatible with all phenomenological constraints,
but has quite a heavy spectrum. We argue that the fine-tuning associated to
this heavy spectrum would be substantially ameliorated if an additional
relationship mu=-2M were present in the underlying theory.Comment: 18 pages, minor revision
Multimessenger astronomy with the Einstein Telescope
Gravitational waves (GWs) are expected to play a crucial role in the
development of multimessenger astrophysics. The combination of GW observations
with other astrophysical triggers, such as from gamma-ray and X-ray satellites,
optical/radio telescopes, and neutrino detectors allows us to decipher science
that would otherwise be inaccessible. In this paper, we provide a broad review
from the multimessenger perspective of the science reach offered by the third
generation interferometric GW detectors and by the Einstein Telescope (ET) in
particular. We focus on cosmic transients, and base our estimates on the
results obtained by ET's predecessors GEO, LIGO, and Virgo.Comment: 26 pages. 3 figures. Special issue of GRG on the Einstein Telescope.
Minor corrections include
The 21 cm Signature of Cosmic String Wakes
We discuss the signature of a cosmic string wake in 21cm redshift surveys.
Since 21cm surveys probe higher redshifts than optical large-scale structure
surveys, the signatures of cosmic strings are more manifest in 21cm maps than
they are in optical galaxy surveys. We find that, provided the tension of the
cosmic string exceeds a critical value (which depends on both the redshift when
the string wake is created and the redshift of observation), a cosmic string
wake will generate an emission signal with a brightness temperature which
approaches a limiting value which at a redshift of is close to 400
mK in the limit of large string tension. The signal will have a specific
signature in position space: the excess 21cm radiation will be confined to a
wedge-shaped region whose tip corresponds to the position of the string, whose
planar dimensions are set by the planar dimensions of the string wake, and
whose thickness (in redshift direction) depends on the string tension. For
wakes created at , then at a redshift of the
critical value of the string tension is , and
it decreases linearly with redshift (for wakes created at the time of equal
matter and radiation, the critical value is a factor of two lower at the same
redshift). For smaller tensions, cosmic strings lead to an observable
absorption signal with the same wedge geometry.Comment: 11 pages, 4 figures; a couple of comments added in the discussion
sectio
Lower limit on the neutralino mass in the general MSSM
We discuss constraints on SUSY models with non-unified gaugino masses and R_P
conservation. We derive a lower bound on the neutralino mass combining the
direct limits from LEP, the indirect limits from gmuon, bsgamma, Bsmumu and the
relic density constraint from WMAP. The lightest neutralino (mneutralino=6GeV)
is found in models with a light pseudoscalar with MA<200GeV and a large value
for . Models with heavy pseudoscalars lead to mneutralino>18(29)GeV
for . We show that even a very conservative bound from the
muon anomalous magnetic moment can increase the lower bound on the neutralino
mass in models with mu<0 and/or large values of . We then examine
the potential of the Tevatron and the direct detection experiments to probe the
SUSY models with the lightest neutralinos allowed in the context of light
pseudoscalars with high . We also examine the potential of an e+e-
collider of 500GeV to produce SUSY particles in all models with neutralinos
lighter than the W. In contrast to the mSUGRA models, observation of at least
one sparticle is not always guaranteed.Comment: 37 pages, LateX, 16 figures, paper with higher resolution figures
available at
http://wwwlapp.in2p3.fr/~boudjema/papers/bound-lsp/bound-lsp.htm
Women, men and coronary heart disease: a review of the qualitative literature
Aim. This paper presents a review of the qualitative literature which examines the experiences of patients with coronary heart disease. The paper also assesses whether the experiences of both female and male patients are reflected in the literature and summarizes key themes.
Background. Understanding patients' experiences of their illness is important for coronary heart disease prevention and education. Qualitative methods are particularly suited to eliciting patients' detailed understandings and perceptions of illness. As much previous research has been 'gender neutral', this review pays particular attention to gender.
Methods. Published papers from 60 qualitative studies were identified for the review through searches in MEDLINE, EMBASE, CINAHL, PREMEDLINE, PsychINFO, Social Sciences Citation Index and Web of Science using keywords related to coronary heart disease.
Findings. Early qualitative studies of patients with coronary heart disease were conducted almost exclusively with men, and tended to generalize from 'male' experience to 'human' experience. By the late 1990s this pattern had changed, with the majority of studies including women and many being conducted with solely female samples. However, many studies that include both male and female coronary heart disease patients still do not have a specific gender focus. Key themes in the literature include interpreting symptoms and seeking help, belief about coronary 'candidates' and relationships with health professionals. The influence of social roles is important: many female patients have difficulties reconciling family responsibilities and medical advice, while male patients worry about being absent from work.
Conclusions. There is a need for studies that compare the experiences of men and women. There is also an urgent need for work that takes masculinity and gender roles into account when exploring the experiences of men with coronary heart disease
Energy and Flux Measurements of Ultra-High Energy Cosmic Rays Observed During the First ANITA Flight
The first flight of the Antarctic Impulsive Transient Antenna (ANITA)
experiment recorded 16 radio signals that were emitted by cosmic-ray induced
air showers. For 14 of these events, this radiation was reflected from the ice.
The dominant contribution to the radiation from the deflection of positrons and
electrons in the geomagnetic field, which is beamed in the direction of motion
of the air shower. This radiation is reflected from the ice and subsequently
detected by the ANITA experiment at a flight altitude of 36km. In this paper,
we estimate the energy of the 14 individual events and find that the mean
energy of the cosmic-ray sample is 2.9 EeV. By simulating the ANITA flight, we
calculate its exposure for ultra-high energy cosmic rays. We estimate for the
first time the cosmic-ray flux derived only from radio observations. In
addition, we find that the Monte Carlo simulation of the ANITA data set is in
agreement with the total number of observed events and with the properties of
those events.Comment: Added more explanation of the experimental setup and textual
improvement
- âŠ