9 research outputs found

    Genotype-Phenotype Correlation for TGFBI Corneal Dystrophies Identifies p.(G623D) as a Novel Cause of Epithelial Basement Membrane Dystrophy.

    Get PDF
    Purpose: The majority of anterior corneal dystrophies are caused by dominant mutations in TGFBI (transforming growth factor β-induced) collectively known as the epithelial-stromal TGFBI dystrophies. Most cases of epithelial basement membrane dystrophy (EBMD) are thought to result from a degenerative (nongenetic) process; however, a minority of cases are associated with specific TGFBI mutations. We evaluated the spectrum of TGFBI mutations and associated phenotypes in a United Kingdom cohort with typical epithelial-stromal TGFBI dystrophies and an EBMD cohort. Methods: We recruited 68 probands with a clinical diagnosis of epithelial-stromal TGFBI dystrophy and 23 probands with bilateral EBMD. DNA was extracted from peripheral leukocytes, and TGFBI was bi-directly Sanger sequenced. Results: Nine TGFBI mutations were identified. The most common occurred at the mutation hot-spot residues R124 and R555 in 61 probands; these individuals had a genotype-phenotype correlation consistent with prior reports. Four probands with lattice corneal dystrophy carried a mutation in exon 14: p.(A620D), p.(V625D), and p.(H626R). We identified a p.(G623D) mutation in five probands, including two probands from the EBMD cohort. These subjects typically had an onset of severe recurrent corneal epithelial erosion in the fourth decade with mild diffuse or geographic subepithelial corneal opacities and only small anterior stromal lattice structures in older individuals. Symptoms of painful epithelial erosion improved markedly following phototherapeutic keratectomy. Conclusions: There was a strong correlation between genotype and phenotype for the majority of TGFBI mutations. In this cohort, the p.(G623D) mutation caused a greater proportion of TGFBI-associated disease than anticipated, associated with variable phenotypes including individuals diagnosed with EBMD

    Tendon Is Covered by a Basement Membrane Epithelium That Is Required for Cell Retention and the Prevention of Adhesion Formation

    Get PDF
    The ability of tendons to glide smoothly during muscle contraction is impaired after injury by fibrous adhesions that form between the damaged tendon surface and surrounding tissues. To understand how adhesions form we incubated excised tendons in fibrin gels (to mimic the homeostatic environment at the injury site) and assessed cell migration. We noticed cells exiting the tendon from only the cut ends. Furthermore, treatment of the tendon with trypsin resulted in cell extravagation from the shaft of the tendons. Electron microscopy and immunolocalisation studies showed that the tendons are covered by a novel cell layer in which a collagen type IV/laminin basement membrane (BM) overlies a keratinised epithelium. PCR and western blot analyses confirmed the expression of laminin β1 in surface cells, only. To evaluate the cell retentive properties of the BM in vivo we examined the tendons of the Col4a1+/Svc mouse that is heterozygous for a G-to-A transition in the Col4a1 gene that produces a G1064D substitution in the α1(IV) chain of collagen IV. The flexor tendons had a discontinuous BM, developed fibrous adhesions with overlying tissues, and were acellular at sites of adhesion formation. In further experiments, tenotomy of wild-type mice resulted in expression of laminin throughout the adhesion. In conclusion, we show the existence of a novel tendon BM-epithelium that is required to prevent adhesion formation. The Col4a1+/Svc mouse is an effective animal model for studying adhesion formation because of the presence of a structurally-defective collagen type IV-containing BM

    Staged decline of neuronal function in vivo in an animal model of Alzheimer's disease

    Get PDF
    The accumulation of amyloid-β in the brain is an essential feature of Alzheimer's disease. However, the impact of amyloid-β-accumulation on neuronal dysfunction on the single cell level in vivo is poorly understood. Here we investigate the progression of amyloid-β load in relation to neuronal dysfunction in the visual system of the APP23×PS45 mouse model of Alzheimer's disease. Using in vivo two-photon calcium imaging in the visual cortex, we demonstrate that a progressive deterioration of neuronal tuning for the orientation of visual stimuli occurs in parallel with the age-dependent increase of the amyloid-β load. Importantly, we find this deterioration only in neurons that are hyperactive during spontaneous activity. This impairment of visual cortical circuit function also correlates with pronounced deficits in visual-pattern discrimination. Together, our results identify distinct stages of decline in sensory cortical performance in vivo as a function of the increased amyloid-β-load

    ミャンマー連邦共和国ヤンゴン市の公立学校において実施したデングウイルス媒介蚊に対する長期残効性ピリプロキシフェン幼虫剤(SumiLarvR2MR)の効果試験

    Get PDF
    Background: Mosquito-borne diseases are prevalent in Myanmar, with the number of dengue cases showing a significant increase in recent years. Dengue vectors have developed resistance to insecticides and currently used larvicides show only short-term effectiveness. As a result, an alternative larvicide is urgently needed. The present study evaluated the larvicidal effectiveness of long-lasting pyriproxyfen resin discs (SumiLarvR2MR) against dengue virus vectors in schools in Hlaing Thar Yar Township, Yangon. Results: The proportion of Aedes mosquito-infested containers was significantly reduced in the schools applied with the larvicide (OR: 0.24, 95% CI: 0.12?0.48) while there was little reduction noted in the control schools (OR: 0.97, 95% CI: 0.55?1.72). The density of infested containers was also significantly reduced in the intervention schools (Beta: -1.50, 95% CI: -1.98? -1.04), but there was no significant reduction in density in the control schools (Beta: -0.19, 95% CI: -0.53?0.14). The proportion of adult emergence was less than 20% in the treated water collected from the intervention schools for six months, while the proportion was over 90% in the untreated water. In addition, eight-month-old SumiLarvR2MR resin discs were still 100% effective when tested in the laboratory. More than 50% of the discs disappeared from treated containers within two months of intervention. Conclusions: SumiLarvR2MR was effective in reducing Aedes-infested containers at least six months after its application in schools. This new pyriproxyfen formulation has great potential for improving the current dengue vector control program in Myanmar.長崎大学学位論文 学位記番号:博(医歯薬)甲第1060号 学位授与年月日:平成30年3月20日Author: Sai Zaw Min Oo, Sein Thaung, Yan Naung Maung Maung, Khin Myo Aye, Zar Zar Aung, Hlaing Myat Thu, Kyaw Zin Thant and Noboru MinakawaCitation: Parasites & Vectors, 11, 16; 2018Nagasaki University (長崎大学)課程博

    Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error

    No full text

    One stop shop: backbones trees for important phytopathogenic genera: I (2014)

    Get PDF
    Many fungi are pathogenic on plants and cause significant damage in agriculture and forestry. They are also part of the natural ecosystem and may play a role in regulating plant numbers/density. Morphological identification and analysis of plant pathogenic fungi, while important, is often hampered by the scarcity of discriminatory taxonomic characters and the endophytic or inconspicuous nature of these fungi. Molecular (DNA sequence) data for plant pathogenic fungi have emerged as key information for diagnostic and classification studies, although hampered in part by non-standard laboratory practices and analytical methods. To facilitate current and future research, this study provides phylogenetic synopses for 25 groups of plant pathogenic fungi in the Ascomycota, Basidiomycota, Mucormycotina (Fungi), and Oomycota, using recent molecular data, up-to-date names, and the latest taxonomic insights. Lineage-specific laboratory protocols together with advice on their application, as well as general observations, are also provided. We hope to maintain updated backbone trees of these fungal lineages over time and to publish them jointly as new data emerge. Researchers of plant pathogenic fungi not covered by the present study are invited to join this future effort. Bipolaris, Botryosphaeriaceae, Botryosphaeria, Botrytis, Choanephora, Colletotrichum, Curvularia, Diaporthe, Diplodia, Dothiorella, Fusarium, Gilbertella, Lasiodiplodia, Mucor, Neofusicoccum, Pestalotiopsis, Phyllosticta, Phytophthora, Puccinia, Pyrenophora, Pythium, Rhizopus, Stagonosporopsis, Ustilago and Verticillium are dealt with in this paper
    corecore