16 research outputs found
Chickpea Genotypes Contrasting for Vigor and Canopy Conductance Also Differ in Their Dependence on Different Water Transport Pathways
Lower plant transpiration rate (TR) under high vapor pressure deficit (VPD) conditions and early plant vigor are proposed as major traits influencing the rate of crop water use and possibly the fitness of chickpea lines to specific terminal drought conditionsâthis being the major constraint limiting chickpea productivity. The physiological mechanisms underlying difference in TR under high VPD and vigor are still unresolved, and so is the link between vigor and TR. Lower TR is hypothesized to relate to hydraulic conductance differences. Experiments were conducted in both soil (Vertisol) and hydroponic culture. The assessment of the TR response to increasing VPD showed that high vigor genotypes had TR restriction under high VPD, and this was confirmed in the early vigor parent and progeny genotype (ICC 4958 and RIL 211) having lower TR than the late vigor parent and progeny genotype (ICC 1882 and RIL 022). Inhibition of water transport pathways [apoplast and symplast (aquaporins)] in intact plants led to a lower transpiration inhibition in the early vigor/low TR genotypes than in the late vigor/high TR genotypes. De-rooted shoot treatment with an aquaporin inhibitor led to a lower transpiration inhibition in the early vigor/low TR genotypes than in the late vigor/high TR genotypes. Early vigor genotypes had lower root hydraulic conductivity than late vigor/high TR genotypes. Under inhibited conditions (apoplast, symplast), root hydraulic conductivity was reduced more in the late vigor/high TR genotypes than in the early vigor/low TR genotypes. We interpret that early vigor/low TR genotypes have a lower involvement of aquaporins in water transport pathways and may also have a smaller apoplastic pathway than high TR genotypes, which could explain the transpiration restriction under high VPD and would be helpful to conserve soil water under high evaporative demand. These findings open an opportunity for breeding to tailor genotypes with different âdosageâ of these traits toward adaptation to varying drought-prone environments
Pearl millet (Pennisetum glaucum) contrasting for the transpiration response to vapour pressure deficit also differ in their dependence on the symplastic and apoplastic water transport pathways
International audienceGenotypic differences in transpiration rate responses to high vapour pressure deficit (VPD) was earlier reported. Here we tested the hypothesis that this limitation could relate to different degrees of dependence on the apoplastic (spaces between cells), and symplastic water transport pathways (through cells via aquaporin-facilitated transport), which are known to have different hydraulic conductivities. The low transpiration rate (Tr) genotype PRLT 2/89/33 either restricted its transpiration under high VPD, or was more sensitive to VPD than H77/833-2, when grown hydroponically or in soil. The slope of the transpiration response to an ascending series of VPD was lower in whole plants than in de-rooted shoots. In addition, the transpiration response of detached leaves to moderately high VPD (2.67kPa), normalised against leaves exposed to constant VPD (1.27kPa), was similar in low and high Tr genotypes. This suggested that roots hydraulics were a substantial limitation to water flow in pearl millet, especially under high VPD. The dependence on the apoplastic and symplastic water transport pathways was investigated by assessing the transpiration response of plants treated with inhibitors specific to the AQP-mediated symplastic pathway (AgNO3 and H2O2) and to the apoplastic pathway (precipitates of Cu(Fe(CN)6) or Cu(CuFe(CN)6)). When CuSO4 alone was used, Cu ions caused an inhibition of transpiration in both genotypes and more so in H77/833-2. The transpiration of high Tr H77/833-2 was decreased more by AQP inhibitors under low VPD (1.8kPa) than in PRLT 2/89/33, whereas under high VPD (4.2kPa), the transpiration of PRLT 2/89/33 was decreased more by AQP inhibitors than in H77/833-2. The transpiration rate of detached leaves from H77/833-2 when treated with AgNO3 decreased more than in PRLT 2/89/33. Although the root hydraulic conductivity of both genotypes was similar, it decreased more upon the application of a symplastic inhibitor in H77/833-2. The transpiration of low Tr PRLT 2/89/33 was decreased more by apoplastic inhibitors under both low and high VPD. Then the hydraulic conductivity decreased more upon the application of an apoplastic inhibitor in PRLT 2/89/33. In conclusion, both pathways contributed to water transport, and their contribution varied with environmental conditions and genotypes. Roots were a main source of hydraulic limitation in these genotypes of pearl millet, although a leaf limitation was not excluded. The similarity between genotypes in root hydraulic conductivity under normal conditions also suggests changes in this conductivity upon changes in the evaporative demand. The low Tr genotype depended more on the apoplastic pathway for water transport, whereas the high Tr genotype depended on both pathway, may be by 'tuning-up' the symplastic pathway under high transpiration demand, very likely via the involvement of aquaporins
Characterization of the Pearl Millet Cultivation Environments in India: Status and Perspectives Enabled by Expanded Data Analytics and Digital Tools
The cultivation of pearl millet in India is experiencing important transformations. Here, we propose a new characterization of the pearl millet production environment using the latest available district level data (1998â2017), principal component analysis, and large-scale crop model simulations. Pearl millet cultivation environment can be divided in up to five environments (TPEs). The eastern part of the country (Rajasthan, Haryana, Uttar Pradesh) emerges as the only region where pearl millet cultivation has grown (+0.4 Kha/year), with important yield increase (+51 kg/ha/year), and potential surplus that are likely exported. Important reductions of pearl millet cultivated area in Gujarat (â4.5 Kha/year), Maharashtra and Karnataka (â4 Kha/year) are potentially due to economy-driven transition to other more profitable crops, such as cotton or maize. The potential rain increase could also accelerate this transition. With R2â [0.15â0.61], the tested crop models reflected reasonably well the pearl millet production system in the A1 (North Radjasthan) and AE1 (South Rajastan and Haryana) TPEs covering the largest area (66%) and production share (59%), especially after the use of a new strategy for environment and management parameters calibration. Those results set the base for in silico system design and optimization in future climatic scenarios
Modelling the effect of plant water use traits on yield and stay-green expression in sorghum
Post-rainy sorghum (Sorghum bicolor (L.) Moench) production underpins the livelihood of millions in the semiarid tropics, where the crop is affected by drought. Drought scenarios have been classified and quantified using crop simulation. In this report, variation in traits that hypothetically contribute to drought adaptation (plant growth dynamics, canopy and root water conducting capacity, drought stress responses) were virtually introgressed into the most common post-rainy sorghum genotype, and the influence of these traits on plant growth, development, and grain and stover yield were simulated across different scenarios. Limited transpiration rates under high vapour pressure deficit had the highest positive effect on production, especially combined with enhanced water extraction capacity at the root level. Variability in leaf development (smaller canopy size, later plant vigour or increased leaf appearance rate) also increased grain yield under severe drought, although it caused a stover yield trade-off under milder stress. Although the leaf development response to soil drying varied, this trait had only a modest benefit on crop production across all stress scenarios. Closer dissection of the model outputs showed that under water limitation, grain yield was largely determined by the amount of water availability after anthesis, and this relationship became closer with stress severity. All traits investigated increased water availability after anthesis and caused a delay in leaf senescence and led to a âstay-greenâ phenotype. In conclusion, we showed that breeding success remained highly probabilistic; maximum resilience and economic benefits depended on drought frequency. Maximum potential could be explored by specific combinations of traits
Modelling the effect of plant water use traits on yield and stay-green expression in sorghum
Post-rainy sorghum (Sorghum bicolor (L.) Moench) production underpins the livelihood of millions in the semiarid tropics, where the crop is affected by drought. Drought scenarios have been classified and quantified using crop simulation. In this report, variation in traits that hypothetically contribute to drought adaptation (plant growth dynamics, canopy and root water conducting capacity, drought stress responses) were virtually introgressed into the most common post-rainy sorghum genotype, and the influence of these traits on plant growth, development, and grain and stover yield were simulated across different scenarios. Limited transpiration rates under high vapour pressure deficit had the highest positive effect on production, especially combined with enhanced water extraction capacity at the root level. Variability in leaf development (smaller canopy size, later plant vigour or increased leaf appearance rate) also increased grain yield under severe drought, although it caused a stover yield trade-off under milder stress. Although the leaf development response to soil drying varied, this trait had only a modest benefit on crop production across all stress scenarios. Closer dissection of the model outputs showed that under water limitation, grain yield was largely determined by the amount of water availability after anthesis, and this relationship became closer with stress severity. All traits investigated increased water availability after anthesis and caused a delay in leaf senescence and led to a âstay-greenâ phenotype. In conclusion, we showed that breeding success remained highly probabilistic; maximum resilience and economic benefits depended on drought frequency. Maximum potential could be explored by specific combinations of traits