37 research outputs found

    Regulation of curcuminoids, photosynthetic abilities, total soluble sugar, and rhizome yield traits in two cultivars of turmeric (Curcuma longa) using exogenous foliar paclobutrazol

    Get PDF
    Paclobutrazol (PBZ) is a member of plant growth retardants, commonly applied for growth regulation, yield improvement, and biotic and abiotic stress alleviation. However, the effects of PBZ on turmeric (Curcuma longa L.; Zingiberaceae), a rhizomatous herb, have not been well established. The objective of this investigation was to gain a better understanding of the effect of PBZ on two different varieties of turmeric plants, ‘Surat Thani’ (‘URT’; high curcuminoids >5% w/w) and ‘Pichit’ (‘PJT’; low curcuminoids <3% w/w). Pseudostem height of cv. ‘PJT’ treated by 340 µM PBZ was significantly decreased by 14.82% over control, whereas it was unchanged in cv. ‘URT’. Interestingly, leaf greenness (SPAD value), maximum quantum yield of PSII (Fv/Fm) and photon yield of PSII (ΦPSII) in cv. ‘PJT’ treated by 340 µM PBZ were significantly elevated by 1.47, 1.28 and 1.23 folds, over control respectively. Net photosynthetic rate (Pn) in cv. ‘PJT’ declined by 38.58% (340 µM PBZ) over control, as a result of low levels of total soluble sugars (TSS; 127.8 mg g-1 DW) in turmeric rhizome. A positive relation between photosynthetic abilities and aerial fresh weight was demonstrated. In addition, a negative relationship between TSS and total curcuminoids was evidently found (R2 = 0.4524). Curcuminoids yield in turmeric rhizomes significantly dropped, depending on the degree of exogenous foliar PBZ applications. In summary, cv. PJT was found to be very sensitive to PBZ application, whereas rhizome yield and growth traits and high amount of curcuminoids were retained in cv. ‘URT’. Plant growth retention in turmeric cv. ‘URT’ using 170 mM PBZ foliar spray without negative effects on rhizome biomass and total curcuminoids content was demonstrated

    True-to-type micropropagated plants of para rubber (Hevea brasiliensis Müll. Arg.) via somatic embryogenesis

    Get PDF
    Plant micropropagation via somatic embryogenesis is a powerful technique for rapid mass propagation, especially in para rubber (Hevea brasiliensis Müll. Arg.). However, somaclonal variations are the major limitation of this process. To date, DNA fingerprinting, i.e., RAPD (Randomly Amplified Polymorphic DNA), Star Codon Targeted (SCoT), and SSRs (Simple Sequence Repeats), is one of the most successful technologies to detect the genetic fidelity in the somatic embryos. The aim of present study was to induce somatic embryos from inner integument explants of para rubber cv. ‘RRIM 600’ at different developmental stages and subsequent acclimatization and transplantation (under greenhouse and field conditions) of the propagated seedlings. The genetic stability of the plants derived from somatic embryos was also analysed in comparison to the mother plant using RAPD, SCoT and SSRs markers. Somatic embryos derived from inner integuments of 5-week-old immature seeds after pollination were more efficient than older and younger seeds. In addition, para rubber mother plants cv. ‘RRIM600’ and plants derived from somatic embryogenesis demonstrated the same pattern of DNA fragments, as confirmed by three PCR-based techniques, RAPD, SCoT and SSRs, whereas these in the pattern were different from ‘RRIT 226’, ‘PB 235’, ‘PB 251’, ‘PB 255’ and ‘BMP 24’. Interestingly, T2 plant was found to possess somaclonal variations when compared with mother plant. Based on the results, we confirm that the plants derived from somatic embryogenesis of para rubber cv. ‘RRIM 600’ were true-to-type to that of ‘RRIM 600’ master stock

    Evaluation of water deficit tolerance in maize genotypes using biochemical, physio-morphological changes and yield traits as multivariate cluster analysis

    Get PDF
    Drought is an abiotic stress that inhibits plant growth and development and, therefore, declines crop productivity, as seen in maize plant. The aim of this investigation was to identify the candidate maize varieties that can be grown under water limited conditions using physio-morphological and yield attributes. Eight genotypes of maize including ‘Suwan4452’ (drought tolerant) as a positive check, ‘CP301’, ‘CP-DK888’, ‘DK7979’, ‘DK9901’, ‘Pac339’, ‘S7328’, and ‘Suwan5’ were selected as test plants. Physiological, biochemical and morphological characteristics at seedling (24 day after sowing; DAS) and reproductive (80 DAS) developmental stages of plants under 20-day water withholding (WD), and yield traits at harvesting period were analysed. Leaf temperature in each genotype increased with the degree of water deficit stress, leading to leaf chlorosis, and reduction in maximum quantum yield of PSII (Fv/Fm), photon yield of PSII (ΦPSII), net photosynthetic rate (Pn), overall growth and yield. Pn and stomatal conductance (gs) in drought tolerant genotype, ‘Suwan4452’, were decreased by 19.1% and 18.6%, respectively, whereas these in drought sensitive, ‘Pac339’, were significantly declined by 53.9% and 61.8%, respectively. Physio-morphological parameters, growth performance and yield-related traits of maize genotypes grown under water deficit conditions and well-watered conditions were subjected to Ward’s cluster method for identification of water deficit tolerant cultivars. Maintaining photosynthetic abilities, osmotic adjustment and CWSI in drought tolerant genotypes of maize were evidently demonstrated to keep overall growth performance and yield attributes. Based on multivariate cluster analysis and PCA (principal component analysis), ‘Suwan4452’, ‘CP-DK888’ and ‘S7328’ were categorized as drought tolerant genotypes whereas ‘Suwan5’, ‘Pac339’, ‘DK7979’, ‘CP301’ and ‘DK9901’ were identified as drought susceptible cultivars. Hybrid maize cvs. ‘CP-DK888’ and ‘S7328’ may further be suggested to be grown in the rainfed area without irrigation

    In vitro flowering of indica rice (Oryza sativa L. spp. indica)

    Full text link

    Calcium-alleviated salt tolerance in indica rice (Oryza sativa L. spp. indica): Physiological and morphological changes

    No full text
    Abstract Calcium (Ca) is a signaling molecule that plays an active role in regulating various mechanisms involved in recognition and response to abiotic stresses in plants. However, not much has been done to evaluate its role in regulating physiological and biochemical process in response to salt-induced stress. Two rice genotypes, Pokkali salt tolerant and IR29 salt susceptible, grown on liquid Murashige and Skoog medium (MS) supplied by 1.98 mM CaCl 2 (control) were compared to 2 (3.96 mM), 4 (7.92 mM) and 8 (15.84 mM) folds exogenous CaCl 2 pretreatment subsequently exposed to 200 mM NaCl salt stress. Thus, the present investigation evaluated the potential of exogenous calcium chloride (CaCl 2 ) supply in improving the growth performance and photosynthetic ability in salt stressed rice. In IR29 salt susceptible rice, leaf area of salt-stressed seedling was significantly recovered by exogenous application of 7.92 mM CaCl 2 , which was greater by 1.38-folds over that in 1.98 mM CaCl 2 application. Exogenous CaCl 2 (7.92 mM) enhanced proline accumulation in both Pokkali (3.26 mol g -1 FW) and IR29 (4.37 mol g -1 FW) genotypes, and reduced relative electrolyte leakage thereby indicating its positive role in membrane stability. Treatment of 7.92 mM CaCl 2 significantly enhanced the photosynthetic abilities, including maximum quantum yield of PSII (F v /F m ), photon yield of PSII ( PSII ), photochemical quenching (qP) and net photosynthetic rate (P n ), in two genotypes of salt-stressed rice seedlings, especially in salt susceptible IR29 genotypes. The study concludes that an exogenous application of 7.92mM CaCl 2 significantly enhanced the photosynthetic abilities and overall growth performances in the photoautotrophic growth of salt-stressed rice seedlings. Exogenous calcium in the culture media may absorb by root tissues, transfer to whole plant and function as salt defense mechanisms including calcium signaling in the abscisic acid (ABA) regulation system and calcium sensing in stomatal closure when plant subjected to salt stress. Keywords: calcium, salinity alleviation, leaf area, photosynthetic abilities, salt stress. Abbreviations:CaCl 2 _calcium chloride; Chl a _chlorophyll a; Chl b _chlorophyll b; F v /F m _maximum quantum yield of PSII; MS_Murashige and Skoog; P n _net photosynthetic rate; qP_photochemical quenching; PSII _photon yield of PSII; PPFD_photosynthetic photon flux density; REL_relative electrolyte leakage; C x+c _total carotenoid

    Regulation of curcuminoids, photosynthetic abilities, total soluble sugar, and rhizome yield traits in two cultivars of turmeric (Curcuma longa) using exogenous foliar paclobutrazol

    No full text
    Paclobutrazol (PBZ) is a member of plant growth retardants, commonly applied for growth regulation, yield improvement, and biotic and abiotic stress alleviation. However, the effects of PBZ on turmeric (Curcuma longa L.; Zingiberaceae), a rhizomatous herb, have not been well established. The objective of this investigation was to gain a better understanding of the effect of PBZ on two different varieties of turmeric plants, ‘Surat Thani’ (‘URT’; high curcuminoids &gt;5% w/w) and ‘Pichit’ (‘PJT’; low curcuminoids &lt;3% w/w). Pseudostem height of cv. ‘PJT’ treated by 340 µM PBZ was significantly decreased by 14.82% over control, whereas it was unchanged in cv. ‘URT’. Interestingly, leaf greenness (SPAD value), maximum quantum yield of PSII (Fv/Fm) and photon yield of PSII (ΦPSII) in cv. ‘PJT’ treated by 340 µM PBZ were significantly elevated by 1.47, 1.28 and 1.23 folds, over control respectively. Net photosynthetic rate (Pn) in cv. ‘PJT’ declined by 38.58% (340 µM PBZ) over control, as a result of low levels of total soluble sugars (TSS; 127.8 mg g-1 DW) in turmeric rhizome. A positive relation between photosynthetic abilities and aerial fresh weight was demonstrated. In addition, a negative relationship between TSS and total curcuminoids was evidently found (R2 = 0.4524). Curcuminoids yield in turmeric rhizomes significantly dropped, depending on the degree of exogenous foliar PBZ applications. In summary, cv. PJT was found to be very sensitive to PBZ application, whereas rhizome yield and growth traits and high amount of curcuminoids were retained in cv. ‘URT’. Plant growth retention in turmeric cv. ‘URT’ using 170 mM PBZ foliar spray without negative effects on rhizome biomass and total curcuminoids content was demonstrated.</jats:p

    Water-Deficit Tolerance in Sweet Potato [Ipomoea batatas (L.) Lam.] by Foliar Application of Paclobutrazol: Role of Soluble Sugar and Free Proline

    No full text
    The objective of this study was to elevate water deficit tolerance by improving soluble sugar and free proline accumulation, photosynthetic pigment stabilization, photosynthetic abilities, growth performance and storage root yield in sweet potato cv. ‘Tainung 57’ using a foliar application of paclobutrazol (PBZ). The experiment followed a Completely Randomized Block Design with four concentrations of PBZ: 0 (control), 17, 34, and 51 μM before exposure to 47.5% (well irrigation), 32.3% (mild water deficit) or 17.5% (severe water deficit) soil water content. A sweet potato cultivar, ‘Japanese Yellow’, with water deficit tolerance attributes was the positive check in this study. Total soluble sugar content (sucrose, glucose, and fructose) increased by 3.96-folds in ‘Tainung 57’ plants treated with 34 μM PBZ grown under 32.3% soil water content (SWC) compared to the untreated plants, adjusting osmotic potential in the leaves and controlling stomatal closure (represented by stomatal conductance and transpiration rate). In addition, under the same treatment, free proline content (2.15 μmol g-1 FW) increased by 3.84-folds when exposed to 17.5% SWC. PBZ had an improved effect on leaf size, vine length, photosynthetic pigment stability, chlorophyll fluorescence, and net photosynthetic rate; hence, delaying wilting symptoms and maintaining storage root yield (26.93 g plant-1) at the harvesting stage. A positive relationship between photon yield of PSII (ΦPSII) and net photosynthetic rate was demonstrated (r2 = 0.73). The study concludes that soluble sugar and free proline enrichment in PBZ-pretreated plants may play a critical role as major osmoprotectant to control leaf osmotic potential and stomatal closure when plants were subjected to low soil water content, therefore, maintaining the physiological and morphological characters as well as storage root yield
    corecore