56 research outputs found

    Magnetic Helicity Evolution and Eruptive Activity in NOAA Active Region 11158

    Get PDF
    Coronal mass ejections are among the Sun’s most energetic activity events yet the physical mechanisms that lead to their occurrence are not yet fully understood. They can drive major space weather impacts at Earth, so knowing why and when these ejections will occur is required for accurate space weather forecasts. In this study we use a 4 day time series of a quantity known as the helicity ratio, ∣H J ∣/∣H V ∣ (helicity of the current-carrying part of the active region field to the total relative magnetic helicity within the volume), which has been computed from nonlinear force-free field extrapolations of NOAA active region 11158. We compare the evolution of ∣H J ∣/∣H V ∣ with the activity produced in the corona of the active region and show this ratio can be used to indicate when the active region is prone to eruption. This occurs when ∣H J ∣/∣H V ∣ exceeds a value of 0.1, as suggested by previous studies. We find the helicity ratio variations to be more pronounced during times of strong flux emergence, collision and reconnection between fields of different bipoles, shearing motions, and reconfiguration of the corona through failed and successful eruptions. When flux emergence, collision, and shearing motions have lessened, the changes in helicity ratio are somewhat subtle despite the occurrence of significant eruptive activity during this time

    An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex

    Get PDF
    Bemisia tabaci is a cryptic whitefly-species complex that includes some of the most damaging pests and plant-virus vectors of a diverse range of food and fibre crops worldwide. We combine experimental evidence of: (i) differences in reproductive compatibility, (ii) hybrid verification using a specific nuclear DNA marker and hybrid fertility confirmation and (iii) high-throughput sequencing-derived mitogenomes, to show that the “Mediterranean” (MED) B. tabaci comprises at least two distinct biological species; the globally invasive MED from the Mediterranean Basin and the “African silver-leafing” (ASL) from sub-Saharan Africa, which has no associated invasion records. We demonstrate that, contrary to its common name, the “ASL” does not induce squash silver-leafing symptoms and show that species delimitation based on the widely applied 3.5% partial mtCOI gene sequence divergence threshold produces discordant results, depending on the mtCOI region selected. Of the 292 published mtCOI sequences from MED/ASL groups, 158 (54%) are low quality and/or potential pseudogenes. We demonstrate fundamental deficiencies in delimiting cryptic B. tabaci species, based solely on partial sequences of a mitochondrial barcoding gene. We advocate an integrative approach to reveal the true species richness within cryptic species complexes, which is integral to the deployment of effective pest and disease management strategies

    Effects of the Distribution of Female Primates on the Number of Males

    Get PDF
    The spatiotemporal distribution of females is thought to drive variation in mating systems, and hence plays a central role in understanding animal behavior, ecology and evolution. Previous research has focused on investigating the links between female spatiotemporal distribution and the number of males in haplorhine primates. However, important questions remain concerning the importance of spatial cohesion, the generality of the pattern across haplorhine and strepsirrhine primates, and the consistency of previous findings given phylogenetic uncertainty. To address these issues, we examined how the spatiotemporal distribution of females influences the number of males in primate groups using an expanded comparative dataset and recent advances in Bayesian phylogenetic and statistical methods. Specifically, we investigated the effect of female distributional factors (female number, spatial cohesion, estrous synchrony, breeding season duration and breeding seasonality) on the number of males in primate groups. Using Bayesian approaches to control for uncertainty in phylogeny and the model of trait evolution, we found that the number of females exerted a strong influence on the number of males in primate groups. In a multiple regression model that controlled for female number, we found support for temporal effects, particularly involving female estrous synchrony: the number of males increases when females are more synchronously receptive. Similarly, the number of males increases in species with shorter birth seasons, suggesting that greater breeding seasonality makes defense of females more difficult for male primates. When comparing primate suborders, we found only weak evidence for differences in traits between haplorhines and strepsirrhines, and including suborder in the statistical models did not affect our conclusions or give compelling evidence for different effects in haplorhines and strepsirrhines. Collectively, these results demonstrate that male monopolization is driven primarily by the number of females in groups, and secondarily by synchrony of female reproduction within groups

    Physically-Based Interactive Camera Motion Control Using 3d Input Devices

    No full text
    The newest three-dimensional input devices, together with high speed graphics workstations, make it possible to interactively specify virtual camera motions for animation in real time. In this paper, we describe how naturalistic interaction and realistic-looking motion can be achieved by using a physicallybased model of the camera's behavior. Our approach is to create an abstract physical model of the camera, using the laws of classical mechanics, which is used to simulate the virtual camera motion in real time in response to force data from the various 3D input devices (e.g. the Spaceball, Polhemus and DataGlove). The behavior of the model is determined by several physical parameters such as mass, moment of inertia, and various friction coefficients which can all be varied interactively, and by constraints on the camera's degrees of freedom which can be simulated by setting certain friction parameters to very high values. This allows us to explore a continuous range of physically-base..

    Guided Optimization for Balanced Locomotion

    Get PDF
    Teaching simulated creatures how to walk and run is a challenging problem. As with a baby learning to walk, however, the task of synthesizing the necessary muscle control is simplified if an external hand to assist in maintaining balance is provided. A method of using guiding forces to allow progressive learning of control actions for balanced locomotion is presented. The process has three stages. Stage one involves using a “hand of God” to facilitate balance while the basic actions of a desired motion are learned. Stage two reduces the dependence on external guidance, yielding a more balanced motion. Where possible, a third stage removes the external guidance completely to produce a free, balanced motion. The method is applied to obtain walking motions for a simple biped and a bird-like mechanical creature, as well as walking, running, and skipping motions for a human model of realistic proportions

    Dare to dream again: Reconstructing van Gogh’s Field with Irises near Arles

    Get PDF
    The colors of Field with Irises near Arles, painted by Van Gogh in Arles in 1888, have changed considerably. To get an idea of how this painting, as well as other works by Van Gogh, looked shortly after their production, the Revigo (Re-assessing Vincent van Gogh’s colors) research project was initiated. The aim of this project was to digitally visualize the original colors of paintings and drawings by Vincent van Gogh, using scientific methods backed by expert judgement where required. We adopted an experimental art technological approach and physically reconstructed Van Gogh’s full palette of oil paints, closely matching those he used to paint Field with Irises near Arles. Sixteen different paints were reconstructed, among which the most light-sensitive pigments and linseed oil, which is prone to yellowing, were produced according to 19th century practice. The resulting pigments and oils were chemically analyzed and compared to those used by Van Gogh. The ones that resembled his paints the most were used in the paint reconstructions. Other pigments were either obtained from the Cultural Heritage Agency’s collection of historical pigments, or purchased from Kremer Pigmente. The reconstructed paints were subsequently used to calculate the absorption K and scattering S parameters of the individual paints. Using Kubelka–Munk theory, these optical parameters could in turn be used to determine the color of paint mixtures. We applied this method successfully to digitally visualize the original colors of Field with Irises near Arles. Moreover, the set of optical parameters presented here can similarly be applied to calculate digital visualizations of other paintings by Van Gogh and his contemporaries

    N-Acetylcysteine attenuates tumor necrosis factor alpha levels in autoimmune inner ear disease patients

    Get PDF
    Autoimmune inner ear disease (AIED) is a poorly understood disease marked by bilateral, rapidly progressive hearing loss triggered by unknown stimuli, which is corticosteroid responsive in 60 % of patients. Although the mechanism of the disease is not precisely understood, a complex interaction of cytokines is believed to contribute toward the inflammatory disease process and hearing loss. Previously, we showed the role of TNF-alpha in steroid-sensitive and IL-1beta in steroid-resistant immune-mediated hearing loss. N-Acetylcysteine (NAC), a broad spectrum antioxidant, has been effective in other autoimmune disorders. Other studies have shown NAC to have a protective adjunct role in human idiopathic sudden hearing loss, where the addition of NAC resulted in better hearing recovery than with steroids alone, although the mechanism of this protection was not elucidated. In the present study, we observed PBMCs from AIED patients exhibited higher baseline TNF-alpha and MPO levels compared with normal healthy controls. NAC effectively abrogates LPS-mediated TNF-alpha release from PBMC of both AIED patients and controls. We demonstrated that in AIED patients, the TNF-alpha downstream signaling pathway appears aberrantly regulated, influencing both MPO and IL-8 expression. Given that NAC effectively abrogated LPS-mediated TNF-alpha release and exerted minimal effects on the downstream targets of this pathway, we feel NAC may be a rational adjunct therapy for this enigmatic disease, worthy of clinical exploration
    corecore