4,611 research outputs found

    Quasiparticle Description of Hot QCD at Finite Quark Chemical Potential

    Full text link
    We study the extension of a phenomenologically successful quasiparticle model that describes lattice results of the equation of state of the deconfined phase of QCD for Tc <= T < 4 Tc, to finite quark chemical potential mu. The phase boundary line Tc(mu), the pressure difference (p(T,mu)-p(T,mu=0))/T^4 and the quark number density nq(T,mu)/T^3 are calculated and compared to recent lattice results. Good agreement is found up to quark chemical potentials of order mu = Tc.Comment: 12 pages, 7 figures; added reference

    Why do people opt-out or not opt-out of automatic enrolment? A focus group study of automatic enrolment into a workplace pension in the United Kingdom

    No full text
    Automatic enrolment (AE) into a workplace pension is an important recent development in pension policy. An important question for this policy is why do people opt-out or not opt-out of AE? This question is important for understanding the power of suggestion associated with AE as well as responding to concerns that women might face undue pressure to opt-out. This article addresses this question through a focus group study into the United Kingdom’s new AE policy. Women were more likely than men to cite lack of affordability as a reason for opting out. Lack of information also seemed important for the power of suggestion associated with AE. Further research should explore how to make AE less gender blind as well as the types of information or advice that should be provided alongside AE

    Gauge theory of Faddeev-Skyrme functionals

    Full text link
    We study geometric variational problems for a class of nonlinear sigma-models in quantum field theory. Mathematically, one needs to minimize an energy functional on homotopy classes of maps from closed 3-manifolds into compact homogeneous spaces G/H. The minimizers are known as Hopfions and exhibit localized knot-like structure. Our main results include proving existence of Hopfions as finite energy Sobolev maps in each (generalized) homotopy class when the target space is a symmetric space. For more general spaces we obtain a weaker result on existence of minimizers in each 2-homotopy class. Our approach is based on representing maps into G/H by equivalence classes of flat connections. The equivalence is given by gauge symmetry on pullbacks of G-->G/H bundles. We work out a gauge calculus for connections under this symmetry, and use it to eliminate non-compactness from the minimization problem by fixing the gauge.Comment: 34 pages, no figure

    The Littlest Higgs in Anti-de Sitter Space

    Full text link
    We implement the SU(5)/SO(5) littlest Higgs theory in a slice of 5D Anti-de Sitter space bounded by a UV brane and an IR brane. In this model, there is a bulk SU(5) gauge symmetry that is broken to SO(5) on the IR brane, and the Higgs boson is contained in the Goldstones from this breaking. All of the interactions on the IR brane preserve the global symmetries that protect the Higgs mass, but a radiative potential is generated through loops that stretch to the UV brane where there are explicit SU(5) violating boundary conditions. Like the original littlest Higgs, this model exhibits collective breaking in that two interactions must be turned on in order to generate a Higgs potential. In AdS space, however, collective breaking does not appear in coupling constants directly but rather in the choice of UV brane boundary conditions. We match this AdS construction to the known low energy structure of the littlest Higgs and comment on some of the tensions inherent in the AdS construction. We calculate the 5D Coleman-Weinberg effective potential for the Higgs and find that collective breaking is manifest. In a simplified model with only the SU(2) gauge structure and the top quark, the physical Higgs mass can be of order 200 GeV with no considerable fine tuning (25%). We sketch a more realistic model involving the entire gauge and fermion structure that also implements T-parity, and we comment on the tension between T-parity and flavor structure.Comment: 42 pages, 7 figures, 3 tables; v2: minor rewording, JHEP format; v3: to match JHEP versio

    Operator renewal theory and mixing rates for dynamical systems with infinite measure

    Get PDF
    We develop a theory of operator renewal sequences in the context of infinite ergodic theory. For large classes of dynamical systems preserving an infinite measure, we determine the asymptotic behaviour of iterates LnL^n of the transfer operator. This was previously an intractable problem. Examples of systems covered by our results include (i) parabolic rational maps of the complex plane and (ii) (not necessarily Markovian) nonuniformly expanding interval maps with indifferent fixed points. In addition, we give a particularly simple proof of pointwise dual ergodicity (asymptotic behaviour of j=1nLj\sum_{j=1}^nL^j) for the class of systems under consideration. In certain situations, including Pomeau-Manneville intermittency maps, we obtain higher order expansions for LnL^n and rates of mixing. Also, we obtain error estimates in the associated Dynkin-Lamperti arcsine laws.Comment: Preprint, August 2010. Revised August 2011. After publication, a minor error was pointed out by Kautzsch et al, arXiv:1404.5857. The updated version includes minor corrections in Sections 10 and 11, and corresponding modifications of certain statements in Section 1. All main results are unaffected. In particular, Sections 2-9 are unchanged from the published versio

    Antiferromagnetic ordering in the absence of a structural distortion in Ba(Fe{1-x}Mn{x})2As2

    Full text link
    Neutron and x-ray diffraction studies of Ba(Fe{1-x}Mn{x})2As2 for low doping concentrations (x <= 0.176) reveal that at a critical concentration, 0.102 < x < 0.118, the tetragonal-to-orthorhombic transition abruptly disappears whereas magnetic ordering with a propagation vector of (1/2 1/2 1) persists. Among all of the iron arsenides this observation is unique to Mn-doping, and unexpected because all models for "stripe-like" antiferromagnetic order anticipate an attendant orthorhombic distortion due to magnetoelastic effects. We discuss these observations and their consequences in terms of previous studies of Ba(Fe{1-x}TM{x})2As2 compounds (TM = Transition Metal), and models for magnetic ordering in the iron arsenide compounds.Comment: 5 pages, 4 figures; accepted for publication in Phys. Rev. B Rapid Com

    Suppression of antiferromagnetic order and orthorhombic distortion in superconducting Ba(Fe0.961Rh0.039)2As2

    Full text link
    Neutron diffraction and high-resolution x-ray diffraction studies find that, similar to the closely related underdoped Ba(Fe[1-x]Cox)2As2 superconducting compounds, Ba(Fe0.961Rh0.039)2As2 shows strong evidence of competition and coexistence between superconductivity and antiferromagnetic order below the superconducting transition, Tc = 14 K. The transition temperatures for both the magnetic order and orthorhombic distortion are in excellent agreement with those inferred from resistivity measurements, and both order parameters manifest a distinct decrease in magnitude below Tc. These data suggest that the strong interaction between magnetism and superconductivity is a general feature of electron-doped Ba(Fe[1-x]TMx)2As2 superconductors (TM = Transition Metal).Comment: 4 pages, 4 figure
    corecore