219 research outputs found

    The analog simulation of heat transfer devices for the smoothing of a fluctuating fluid temperature

    Get PDF
    Equations are written to describe a heat exchanger with electrical energy input and also a large tank system which can have electrical energy input. The output temperatures were sampled and fedback to define the energy input to the two systems. These systems were simulated on an analog computer and the ability of the two systems to smooth a fluctuating temperature input was tested. The testing of the systems included trying different types of controllers in the control system as well as different size tanks for the tank system. A satisfactory smoothing of the output temperature was demonstrated after some modifications --Abstract, page ii

    Advanced digital signal processing for coherent optical OFDM transmissions

    Get PDF
    Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has been actively considered as a potential candidate for long-haul transmission and 400 Gb/s to 1 Tb/s Ethernet transport because of its high spectral efficiency, efficient implementation, flexibility and robustness against linear impairments such as chromatic dispersion and polarization mode dispersion. However, due to the long symbol duration and narrow subcarrier spacing, CO-OFDM systems are sensitive to laser phase noise and fibre nonlinearity induced penalties. As a result, the development of CO-OFDM transmission technology crucially relies on efficient techniques to compensate for the laser phase noise and fibre nonlinearity impairments. In this thesis, high performance and low complexity digital signal processing techniques for laser phase noise and fibre nonlinearity compensation in CO-OFDM transmissions are demonstrated. For laser phase noise compensation, three novel techniques, namely quasipilot-aided, decision-directed-free blind and multiplier-free blind are introduced. For fibre nonlinear compensation, two novel techniques which are referred to as phase conjugated pilots and phase conjugated subcarrier coding, are proposed. All these abovementioned digital signal processing techniques offer high performances and flexibilities while requiring relatively low complexities in comparison with other existing phase noise and nonlinear compensation techniques. As a result of the developments of these digital signal processing techniques, CO-OFDM technology is expected to play a significant role in future ultra-high capacity optical network. In addition, this thesis also presents preliminary study on nonlinear Fourier transform based transmission schemes in which OFDM is a highly suitable modulation format. The obtained result paves the way towards a truly flexible nonlinear wave-division multiplexing system that allows the current nonlinear transmission limitations to be exceeded

    Techniques for noise and nonlinear impairments compensation in CO-OFDM transmission

    Get PDF
    In this paper, we discuss recent advances in digital signal processing techniques for compensation of the laser phase noise and fiber nonlinearity impairments in coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission. For laser phase noise compensation, we focus on quasi-pilot-aided (QPA) and decision-directed-free blind (DDF-blind) phase noise compensation techniques. For fiber nonlinearity compensation, we discuss in details the principle and performance of the phase-conjugated pilots (PCP) scheme

    Nonlinear inverse synthesis technique for optical links with lumped amplification

    Get PDF
    The nonlinear inverse synthesis (NIS) method, in which information is encoded directly onto the continuous part of the nonlinear signal spectrum, has been proposed recently as a promising digital signal processing technique for combating fiber nonlinearity impairments. However, because the NIS method is based on the integrability property of the lossless nonlinear Schrödinger equation, the original approach can only be applied directly to optical links with ideal distributed Raman amplification. In this paper, we propose and assess a modified scheme of the NIS method, which can be used effectively in standard optical links with lumped amplifiers, such as, erbium-doped fiber amplifiers (EDFAs). The proposed scheme takes into account the average effect of the fiber loss to obtain an integrable model (lossless path-averaged model) to which the NIS technique is applicable. We found that the error between lossless pathaveraged and lossy models increases linearly with transmission distance and input power (measured in dB). We numerically demonstrate the feasibility of the proposed NIS scheme in a burst mode with orthogonal frequency division multiplexing (OFDM) transmission scheme with advanced modulation formats (e.g., QPSK, 16QAM, and 64QAM), showing a performance improvement up to 3.5 dB; these results are comparable to those achievable with multi-step per span digital backpropagation

    Non-rectangular perfect reconstruction pulse shaping based ICI reduction in CO-OFDM

    Get PDF
    In this paper, we propose to increase residual carrier frequency offset tolerance based on short perfect reconstruction pulse shaping for coherent optical-orthogonal frequency division multiplexing. The proposed method suppresses the residual carrier frequency offset induced penalty at the receiver, without requiring any additional overhead and exhaustive signal processing. The Q-factor improvement contributed by the proposed method is 1.6 dB and 1.8 dB for time-frequency localization maximization and out-of-band energy minimization pulse shapes, respectively. Finally, the transmission span gain under the influence of residual carrier frequency offset is ̃62% with out-of-band energy minimization pulse shape

    Periodic nonlinear Fourier transform for fiber-optic communications, Part II:eigenvalue communication

    Get PDF
    In this paper we propose the design of communication systems based on using periodic nonlinear Fourier transform (PNFT), following the introduction of the method in the Part I. We show that the famous "eigenvalue communication" idea [A. Hasegawa and T. Nyu, J. Lightwave Technol. 11, 395 (1993)] can also be generalized for the PNFT application: In this case, the main spectrum attributed to the PNFT signal decomposition remains constant with the propagation down the optical fiber link. Therefore, the main PNFT spectrum can be encoded with data in the same way as soliton eigenvalues in the original proposal. The results are presented in terms of the bit-error rate (BER) values for different modulation techniques and different constellation sizes vs. the propagation distance, showing a good potential of the technique

    On the design of NFT-based communication systems with lumped amplification

    Get PDF
    Nonlinear Fourier transform (NFT) based transmission technique relies on the integrability of the nonlinear Schrodinger equation (NLSE). However, the lossless NLSE is not directly applicable for the description of light evolution in fibre links with lumped amplifications such as Erbium-doped fibre amplifier (EDFA) because of the non-uniform loss and gain evolution. In this case, the path-averaged model is usually applied as an approximation of the true NLSE model including the fibre loss. However, the inaccuracy of the lossless path-average model, even though being small, can also result in a notable performance degradation in NFT-based transmission systems. In this work, we extend the theoretical approach, which was firstly proposed for solitons in EDFA systems, to the case of NFT-based systems to constructively diminish the aforementioned performance penalty. Based on the quantitative analysis of distortions due to the use of path-average model, we optimise the signal launch and detection points to minimise the models mismatch. Without loss of generality, we demonstrate how the approach works for the NFT systems that use continuous NFT spectrum modulation (vanishing signals) and NFT main spectrum modulation (periodic signals). Through numerical modelling we quantify the corresponding improvements in system performance
    corecore