67 research outputs found
Risk factors for recurrent injuries in victims of suspected non-accidental trauma: a retrospective cohort study
BACKGROUND: Many children who are victims of non-accidental trauma (NAT) may be repeatedly evaluated for injuries related to maltreatment. The purpose of this study was to identify risk factors for repeated injuries in children with suspected NAT. METHODS: We conducted a retrospective cohort study using claims data from a pediatric Medicaid accountable care organization. Children with birth claims and at least one non-birth related claim indicating a diagnosis of NAT or skeletal survey in 2007–2011 were included. Recurrent events were defined as independent episodes of care involving an urgent/emergent care setting that included a diagnosis code specific for child abuse, a CPT code for a skeletal survey, or a diagnosis code for an injury suspicious for abuse. Cox proportional hazards models were used to examine risk factors for recurrent events. RESULTS: Of the 1,361 children with suspected NAT, a recurrent NAT event occurred in 26% within 1 year and 40% within 2 years of their initial event. Independent risk factors for a recurrent NAT event included a rural residence, age < 30 months old, having only 1 or 2 initially detected injuries, and having a dislocation, open wound, or superficial injury at the previous event (p ≤ 0.01 for all). CONCLUSIONS: Over 25% of children who experienced a suspected NAT event had a recurrent episode within one year. These children were younger and more likely to present with “minor” injuries at their previous event
Defects, Dopants and Lithium Mobility in Li <sub>9</sub> v <sub>3</sub> (P <sub>2</sub> O <sub>7</sub> ) <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub>
Layered Li9V3(P2O7)3(PO4)2 has attracted considerable interest as a novel cathode material for potential use in rechargeable lithium batteries. The defect chemistry, doping behavior and lithium diffusion paths in Li9V3(P2O7)3(PO4)2 are investigated using atomistic scale simulations. Here we show that the activation energy for Li migration via the vacancy mechanism is 0.72 eV along the c-axis. Additionally, the most favourable intrinsic defect type is Li Frenkel (0.44 eV/defect) ensuring the formation of Li vacancies that are required for Li diffusion via the vacancy mechanism. The only other intrinsic defect mechanism that is close in energy is the formation of anti-site defect, in which Li and V ions exchange their positions (1.02 eV/defect) and this can play a role at higher temperatures. Considering the solution of tetravalent dopants it is calculated that they require considerable solution energies, however, the solution of GeO2 will reduce the activation energy of migration to 0.66 eV
Lithium diffusion in Li<sub>5</sub>FeO<sub>4</sub>
The anti-fluorite type Li5FeO4 has attracted significant interest as a potential cathode material for Li ion batteries due to its high Li content and electrochemical performance. Atomic scale simulation techniques have been employed to study the defects and Li ion migration in Li5FeO4. The calculations suggest that the most favorable intrinsic defect type is calculated to be the cation anti-site defect, in which Li+ and Fe3+ ions exchange positions. Li Frenkel is also found to be lower in this material (0.85 eV/defect). Long range lithium diffusion paths were constructed in Li5FeO4 and it is confirmed that the lower migration paths are three dimensional with the lowest activation energy of migration at 0.45 eV. Here we show that doping by Si on the Fe site is energetically favourable and an efficient way to introduce a high concentration of lithium vacancies. The introduction of Si increases the migration energy barrier of Li in the vicinity of the dopant to 0.59 eV. Nevertheless, the introduction of Si is positive for the diffusivity as the migration energy barrier increase is lower less than that of the lithium Frenkel process, therefore the activation energy of Li diffusion
Li2SnO3 as a Cathode Material for Lithium-ion Batteries:Defects, Lithium Ion Diffusion and Dopants
Tin-based oxide Li2SnO3 has attracted considerable interest as a promising cathode material for potential use in rechargeable lithium batteries due to its high- capacity. Static atomistic scale simulations are employed to provide insights into the defect chemistry, doping behaviour and lithium diffusion paths in Li2SnO3. The most favourable intrinsic defect type is Li Frenkel (0.75 eV/defect). The formation of anti-site defect, in which Li and Sn ions exchange their positions is 0.78 eV/defect, very close to the Li Frenkel. The present calculations confirm the cation intermixing found experimentally in Li2SnO3. Long range lithium diffusion paths via vacancy mechanisms were examined and it is confirmed that the lowest activation energy migration path is along the c-axis plane with the overall activation energy of 0.61 eV. Subvalent doping by Al on the Sn site is energetically favourable and is proposed to be an efficient way to increase the Li content in Li2SnO3. The electronic structure calculations show that the introduction of Al will not introduce levels in the band gap
Primary Language, Income and the Intensification of Anti-glycemic Medications in Managed Care: the (TRIAD) Study
BACKGROUND
Patients who speak Spanish and/or have low socioeconomic status are at greater risk of suboptimal glycemic control. Inadequate intensification of anti-glycemic medications may partially explain this disparity.
OBJECTIVE
To examine the associations between primary language, income, and medication intensification.
DESIGN
Cohort study with 18-month follow-up.
PARTICIPANTS
One thousand nine hundred and thirty-nine patients with Type 2 diabetes who were not using insulin enrolled in the Translating Research into Action for Diabetes Study (TRIAD), a study of diabetes care in managed care.
MEASUREMENTS
Using administrative pharmacy data, we compared the odds of medication intensification for patients with baseline A1c ≥ 8%, by primary language and annual income. Covariates included age, sex, race/ethnicity, education, Charlson score, diabetes duration, baseline A1c, type of diabetes treatment, and health plan.
RESULTS
Overall, 42.4% of patients were taking intensified regimens at the time of follow-up. We found no difference in the odds of intensification for English speakers versus Spanish speakers. However, compared to patients with incomes 75,000 (OR 2.22, 1.53-3.24) had increased odds of intensification. This latter pattern did not differ statistically by race.
CONCLUSIONS
Low-income patients were less likely to receive medication intensification compared to higher-income patients, but primary language (Spanish vs. English) was not associated with differences in intensification in a managed care setting. Future studies are needed to explain the reduced rate of intensification among low income patients in managed care
Climate change and freshwater zooplankton: what does it boil down to?
Recently, major advances in the climate–zooplankton interface have been made some of which appeared to receive much attention in a broader audience of ecologists as well. In contrast to the marine realm, however, we still lack a more holistic summary of recent knowledge in freshwater. We
discuss climate change-related variation in physical and biological attributes of lakes and running waters, high-order ecological functions, and subsequent alteration
in zooplankton abundance, phenology, distribution, body size, community structure, life history parameters, and behavior by focusing on community level responses. The adequacy of large-scale climatic indices in ecology has received considerable support and provided a framework for the interpretation of community and species level responses in freshwater zooplankton. Modeling perspectives deserve particular consideration, since this promising stream of
ecology is of particular applicability in climate change
research owing to the inherently predictive nature of
this field. In the future, ecologists should expand their
research on species beyond daphnids, should address
questions as to how different intrinsic and extrinsic
drivers interact, should move beyond correlative
approaches toward more mechanistic explanations,
and last but not least, should facilitate transfer of
biological data both across space and time
Distinct mandibular premolar crown morphology in Homo naledi and its implications for the evolution of Homo species in southern Africa
Homo naledi displays a combination of features across the skeleton not found in any other hominin taxon, which has hindered attempts to determine its placement within the hominin clade. Using geometric morphometrics, we assess the morphology of the mandibular premolars of the species at the enamel-dentine junction (EDJ). Comparing with specimens of Paranthropus, Australopithecus and Homo (n = 95), we find that the H. naledi premolars from the Dinaledi chamber consistently display a suite of traits (e.g., tall crown, well22 developed P3 and P4 metaconid, strongly developed P3 mesial marginal ridge, and a P3>P4 size relationship) that distinguish them from known hominin groups. Premolars from a second locality, the Lesedi Chamber, are consistent with this morphology. We also find that two specimens from South Africa, SK 96 (usually attributed to Paranthropus) and Stw 80 (Homo sp.), show similarities to the species, and we discuss a potential evolutionary link between H. naledi and hominins from Sterkfontein and Swartkrans
- …