449 research outputs found
Chiral behavior of pseudo-Goldstone boson masses and decay constants in 2+1 flavor QCD
We present preliminary results for the chiral behavior of charged
pseudo-Goldstone-boson masses and decay constants. These are obtained in
simulations with N_f=2+1 flavors of tree-level, O(a)-improved Wilson sea
quarks. In these simulations, mesons are composed of either valence quarks
discretized in the same way as the sea quarks (unitary simulations) or of
overlap valence quarks (mixed-action simulations). We find that the chiral
behavior of the pseudoscalar meson masses in the mixed-action calculations
cannot be explained with continuum, partially-quenched chiral perturbation
theory. We show that the inclusion of O(a^2) unitarity violations in the chiral
expansion resolves this discrepancy and that the size of the unitarity
violations required are consistent with those which we observe in the
zero-momentum, scalar-isotriplet-meson propagator.Comment: 7 pages, 3 figures, talk by L. Lellouch at the XXV International
Symposium on Lattice Field Theory (LATTICE 2007), 30 July - 4 August 2007,
Regensburg, German
Isospin splittings in the light-baryon octet from lattice QCD and QED
While electromagnetic and up-down quark mass difference effects on octet
baryon masses are very small, they have important consequences. The stability
of the hydrogen atom against beta decay is a prominent example. Here we include
these effects by adding them to valence quarks in a lattice QCD calculation
based on simulations with 5 lattice spacings down to 0.054 fm,
lattice sizes up to 6 fm and average up-down quark masses all the way down to
their physical value. This allows us to gain control over all systematic
errors, except for the one associated with neglecting electromagnetism in the
sea. We compute the octet baryon isomultiplet mass splittings, as well as the
individual contributions from electromagnetism and the up-down quark mass
difference. Our results for the total splittings are in good agreement with
experiment.Comment: 5 pages, 3 figures. Version accepted for publication by Phys. Rev.
Let
Study of temperature dependent atomic correlations in MgB
We have studied the evolution with temperature of the local as well as the
average crystal structure of MgB using the real-space atomic pair
distribution function (PDF) measured by high resolution neutron powder
diffraction. We have investigated the correlations of the B-B and B-Mg nearest
neighbor pair motion by comparing, in the wide temperature range from T=10 K up
to T=600 K, the mean-square displacements (MSD) of single atoms with the
mean-square relative displacements (MSRD) obtained from the PDF peak
linewidths. The results show that the single atom B and Mg vibrations are
mostly decoupled from each other, with a small predominance of positive (in
phase) correlation factor for both the B-B and B-Mg pairs. The small positive
correlation is almost temperature independent, in contrast with our theoretical
calculations; this can be a direct consequence of the strong decay processes of
the anharmonic phonons
A Resolved Debris Disk Around the Candidate Planet-hosting Star HD 95086
Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD 95086. The strong infrared excess of the system indicates that, similar to HR8799, Beta Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD 95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared, and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of approx. 6.0 5.4 (540 490 AU) and disk inclination of approx 25 deg. Assuming the same inclination for the planet candidate's orbit, its reprojected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD 95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modeling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks coexist
Up and Down Quark Masses and Corrections to Dashen's Theorem from Lattice QCD and Quenched QED
In a previous letter (arXiv:1306.2287) we determined the isospin mass
splittings of the baryon octet from a lattice calculation based on quenched QED
and QCD simulations with 5 lattice spacings down to
, lattice sizes up to and average up-down
quark masses all the way down to their physical value. Using the same data we
determine here the corrections to Dashen's theorem and the individual up and
down quark masses. For the parameter which quantifies violations to Dashens's
theorem, we obtain , where the first error is
statistical, the second is systematic, and the third is an estimate of the QED
quenching error. For the light quark masses we obtain,
and in the
scheme at and the isospin breaking ratios
, and
. Our results exclude the solution to the strong
CP problem by more than standard deviations
A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry
We present here a review of the fundamental topics of Hartree-Fock theory in
Quantum Chemistry. From the molecular Hamiltonian, using and discussing the
Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock
equations for the electronic problem. Special emphasis is placed in the most
relevant mathematical aspects of the theoretical derivation of the final
equations, as well as in the results regarding the existence and uniqueness of
their solutions. All Hartree-Fock versions with different spin restrictions are
systematically extracted from the general case, thus providing a unifying
framework. Then, the discretization of the one-electron orbitals space is
reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition
of the basic underlying concepts related to the construction and selection of
Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we
close the review with a section in which the most relevant modern developments
(specially those related to the design of linear-scaling methods) are commented
and linked to the issues discussed. The whole work is intentionally
introductory and rather self-contained, so that it may be useful for non
experts that aim to use quantum chemical methods in interdisciplinary
applications. Moreover, much material that is found scattered in the literature
has been put together here to facilitate comprehension and to serve as a handy
reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and
subeqn package
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Sp1 Expression Is Disrupted in Schizophrenia; A Possible Mechanism for the Abnormal Expression of Mitochondrial Complex I Genes, NDUFV1 and NDUFV2
The prevailing hypothesis regards schizophrenia as a polygenic disease, in which multiple genes combine with each other and with environmental stimuli to produce the variance of its clinical symptoms. We investigated whether the ubiquitous transcription factor Sp1 is abnormally expressed in schizophrenia, and consequently can affect the expression of genes implicated in this disorder. promoter by binding to its three GC-boxes. Both activation and binding were inhibited by mithramycin.These findings suggest that abnormality in Sp1, which can be the main activator/repressor or act in combination with additional transcription factors and is subjected to environmental stimuli, can contribute to the polygenic and clinically heterogeneous nature of schizophrenia
Multi-species sequence comparison reveals dynamic evolution of the elastin gene that has involved purifying selection and lineage-specific insertions/deletions
BACKGROUND: The elastin gene (ELN) is implicated as a factor in both supravalvular aortic stenosis (SVAS) and Williams Beuren Syndrome (WBS), two diseases involving pronounced complications in mental or physical development. Although the complete spectrum of functional roles of the processed gene product remains to be established, these roles are inferred to be analogous in human and mouse. This view is supported by genomic sequence comparison, in which there are no large-scale differences in the ~1.8 Mb sequence block encompassing the common region deleted in WBS, with the exception of an overall reversed physical orientation between human and mouse. RESULTS: Conserved synteny around ELN does not translate to a high level of conservation in the gene itself. In fact, ELN orthologs in mammals show more sequence divergence than expected for a gene with a critical role in development. The pattern of divergence is non-conventional due to an unusually high ratio of gaps to substitutions. Specifically, multi-sequence alignments of eight mammalian sequences reveal numerous non-aligning regions caused by species-specific insertions and deletions, in spite of the fact that the vast majority of aligning sites appear to be conserved and undergoing purifying selection. CONCLUSIONS: The pattern of lineage-specific, in-frame insertions/deletions in the coding exons of ELN orthologous genes is unusual and has led to unique features of the gene in each lineage. These differences may indicate that the gene has a slightly different functional mechanism in mammalian lineages, or that the corresponding regions are functionally inert. Identified regions that undergo purifying selection reflect a functional importance associated with evolutionary pressure to retain those features
Characteristics of small breast and/or ovarian cancer families with germline mutations in BRCA1 and BRCA2
For families with a small number of cases of breast and/or ovarian cancer, limited data are available to predict the likelihood of genetic predisposition due to mutations in BRCA1 or BRCA2. In 104 families with three or more affected individuals (average 3.8) seeking counselling at family cancer clinics, mutation analysis was performed in the open reading frame of BRCA1 and BRCA2 by the protein truncation test and mutation-specific assays. In 31 of the 104 families tested, mutations were detected (30%). The majority of these mutations (25) occurred in BRCA1. Mutations were detected in 15 out of 25 families (60%) with both breast and ovarian cancer and in 16 out of 79 families (20%) with exclusively cases of breast cancer. Thus, an ovarian cancer case strongly predicted finding a mutation (P < 0.001). Within the group of small breast-cancer-only families, a bilateral breast cancer case or a unilateral breast cancer case diagnosed before age 40 independently predicted finding a BRCA1 or BRCA2 mutation (P = 0.005 and P = 0.02, respectively). Therefore, even small breast/ovarian cancer families with at least one case of ovarian cancer, bilateral breast cancer, or a case of breast cancer diagnosed before age 40, should be referred for mutation screening. © 1999 Cancer Research Campaig
- …