9 research outputs found

    Non-adherence to cardiometabolic medication as assessed by LC-MS/MS in urine and its association with kidney and cardiovascular outcomes in type 2 diabetes mellitus

    Get PDF
    Aims/hypothesis Non-adherence to medication is a frequent barrier in the treatment of patients with type 2 diabetes mellitus, potentially limiting the effectiveness of evidence-based treatments. Previous studies have mostly relied on indirect adherence measures to analyse outcomes based on adherence. The aim of this study was to use LC-MS/MS in urine—a non-invasive, direct and objective measure—to assess non-adherence to cardiometabolic drugs and analyse its association with kidney and cardiovascular outcomes. Methods This cohort study includes 1125 participants from the PROVALID study, which follows patients with type 2 diabetes mellitus at the primary care level. Baseline urine samples were tested for 79 cardiometabolic drugs and metabolites thereof via LC-MS/MS. An individual was classified as totally adherent if markers for all drugs were detected, partially non-adherent when at least one marker for one drug was detected, and totally non-adherent if no markers for any drugs were detected. Non-adherence was then analysed in the context of cardiovascular (composite of myocardial infarction, stroke and cardiovascular death) and kidney (composite of sustained 40% decline in eGFR, sustained progression of albuminuria, kidney replacement therapy and death from kidney failure) outcomes. Results Of the participants, 56.3% were totally adherent, 42.0% were partially non-adherent, and 1.7% were totally non-adherent to screened cardiometabolic drugs. Adherence was highest to antiplatelet and glucose-lowering agents and lowest to lipid-lowering agents. Over a median (IQR) follow-up time of 5.10 (4.12–6.12) years, worse cardiovascular outcomes were observed with non-adherence to antiplatelet drugs (HR 10.13 [95% CI 3.06, 33.56]) and worse kidney outcomes were observed with non-adherence to antihypertensive drugs (HR 1.98 [95% CI 1.37, 2.86]). Conclusions/interpretation This analysis shows that non-adherence to cardiometabolic drug regimens is common in type 2 diabetes mellitus and negatively affects kidney and cardiovascular outcomes

    Table_1_Biological variation and reference change value of the estimated glomerular filtration rate in humans: A systematic review and meta-analysis.DOCX

    No full text
    BackgroundKnowledge of the biological variation of serum or plasma creatinine (Cr) and the estimated glomerular filtration rate (eGFR) is important for understanding disease dynamics in Chronic Kidney Disease (CKD). The aim of our study was to determine the magnitude of random fluctuation of eGFR by determining its reference change value (RCV).MethodsWe performed a systematic review and meta-analysis of studies on biological variation of Cr. Relevant studies were identified by systematic literature search on PubMed. Additional studies were retrieved from the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Biological Variation Database. Random-effects meta-analysis was conducted to derive an overall estimate of intra-individual variation of creatinine (CVICr). Based on our estimate of CVICr and RCV for Cr, the RCV for the eGFR was determined.ResultsAmong identified studies, 37 met our inclusion criteria. Meta-analysis of all studies yielded a CVICr of 5.2% (95% confidence interval [CI] 4.6–5.8%), however high between-study heterogeneity (I2 = 82.3%) was found. Exclusion of outliers led to a significant reduction of heterogeneity while still including 85% of all studies and resulted in a slightly lower CVICr of 5.0% (95% CI 4.7–5.4%). Assuming an analytical variation of CVA 1.1%, we found an overall RCV for eGFR of ±16.5%. After exclusion of outlier studies, we found a minimum conservative RCV for eGFR of ±12.5%.ConclusionThe RCV of the eGFR represents a valuable tool for clinicians to discern true changes in kidney function from random fluctuation.</p

    Image_1_Biological variation and reference change value of the estimated glomerular filtration rate in humans: A systematic review and meta-analysis.JPEG

    No full text
    BackgroundKnowledge of the biological variation of serum or plasma creatinine (Cr) and the estimated glomerular filtration rate (eGFR) is important for understanding disease dynamics in Chronic Kidney Disease (CKD). The aim of our study was to determine the magnitude of random fluctuation of eGFR by determining its reference change value (RCV).MethodsWe performed a systematic review and meta-analysis of studies on biological variation of Cr. Relevant studies were identified by systematic literature search on PubMed. Additional studies were retrieved from the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Biological Variation Database. Random-effects meta-analysis was conducted to derive an overall estimate of intra-individual variation of creatinine (CVICr). Based on our estimate of CVICr and RCV for Cr, the RCV for the eGFR was determined.ResultsAmong identified studies, 37 met our inclusion criteria. Meta-analysis of all studies yielded a CVICr of 5.2% (95% confidence interval [CI] 4.6–5.8%), however high between-study heterogeneity (I2 = 82.3%) was found. Exclusion of outliers led to a significant reduction of heterogeneity while still including 85% of all studies and resulted in a slightly lower CVICr of 5.0% (95% CI 4.7–5.4%). Assuming an analytical variation of CVA 1.1%, we found an overall RCV for eGFR of ±16.5%. After exclusion of outlier studies, we found a minimum conservative RCV for eGFR of ±12.5%.ConclusionThe RCV of the eGFR represents a valuable tool for clinicians to discern true changes in kidney function from random fluctuation.</p

    Table_2_Biological variation and reference change value of the estimated glomerular filtration rate in humans: A systematic review and meta-analysis.DOCX

    No full text
    BackgroundKnowledge of the biological variation of serum or plasma creatinine (Cr) and the estimated glomerular filtration rate (eGFR) is important for understanding disease dynamics in Chronic Kidney Disease (CKD). The aim of our study was to determine the magnitude of random fluctuation of eGFR by determining its reference change value (RCV).MethodsWe performed a systematic review and meta-analysis of studies on biological variation of Cr. Relevant studies were identified by systematic literature search on PubMed. Additional studies were retrieved from the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Biological Variation Database. Random-effects meta-analysis was conducted to derive an overall estimate of intra-individual variation of creatinine (CVICr). Based on our estimate of CVICr and RCV for Cr, the RCV for the eGFR was determined.ResultsAmong identified studies, 37 met our inclusion criteria. Meta-analysis of all studies yielded a CVICr of 5.2% (95% confidence interval [CI] 4.6–5.8%), however high between-study heterogeneity (I2 = 82.3%) was found. Exclusion of outliers led to a significant reduction of heterogeneity while still including 85% of all studies and resulted in a slightly lower CVICr of 5.0% (95% CI 4.7–5.4%). Assuming an analytical variation of CVA 1.1%, we found an overall RCV for eGFR of ±16.5%. After exclusion of outlier studies, we found a minimum conservative RCV for eGFR of ±12.5%.ConclusionThe RCV of the eGFR represents a valuable tool for clinicians to discern true changes in kidney function from random fluctuation.</p

    Combination Therapy of RAS Inhibition and SGLT2 Inhibitors Decreases Levels of Endotrophin in Persons with Type 2 Diabetes

    No full text
    We investigated for the first time the effect of combination therapy of renin–angiotensin system inhibition (RASi) and sodium–glucose co-transporter-2 inhibitors (SGLT2is) on endotrophin (ETP), a pro-fibrotic signaling molecule reflecting collagen type VI formation, measured in the plasma of persons with type 2 diabetes (T2D). ETP was measured using the PRO-C6 ELISA in 294 individuals from the “Drug combinations for rewriting trajectories of renal pathologies in type 2 diabetes” (DC-ren) project. In the DC-ren study, kidney disease progression was defined as a >10% decline in the estimated glomerular filtration rate (eGFR) to an eGFR 2. Among the investigated circulating markers, ETP was the most significant predictor of future eGFR. Combination therapy of RASi and SGLT2is led to a significant reduction in ETP levels compared to RASi monotherapy (p for slope difference = 0.002). Higher levels of baseline plasma ETP were associated with a significantly increased risk of kidney disease progression (p = 0.007). In conclusion, plasma ETP identified individuals at higher risk of kidney disease progression. The observed decreased levels of plasma ETP with combination therapy of RASi and SGLT2is in persons with T2D may reflect a reduced risk of kidney disease progression following treatment with SGLT2is

    International Variability of Renal and Cardiovascular Outcomes and Mortality in Patients with Type 2 Diabetes Mellitus in Europe

    Get PDF
    Introduction: Type 2 diabetes and its complications represent a huge burden to public health. With this prospective, observational cohort study, we aimed to estimate and to compare the incidence rate (IR) of renal and cardiovascular outcomes and all-cause mortality in patients with type 2 diabetes in different European countries. Methods: The renal endpoint was a composite of a sustained decline in estimated GFR of at least 40%, a sustained increase in albuminuria of at least 30% including a transition in albuminuria class, progression to kidney failure with replacement therapy, or death from renal causes. The cardiovascular endpoint was a composite of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. Results: 3,131 participants from four European countries (Austria, Hungary, The Netherlands, and Scotland) with a median follow-up time of 4.4 years were included. IRs were adjusted for several risk factors including sex, age, estimated GFR, albuminuria, HbA1c, blood pressure, and duration of type 2 diabetes. Across countries, the adjusted IR for the renal endpoint was significantly higher in Hungary and Austria, and the adjusted IR for the cardiovascular endpoint was significantly higher in Scotland and Austria. All-cause mortality was significantly higher in Scotland compared to all other countries. Conclusion: Our findings show how the longitudinal outcome of patients with type 2 diabetes varies significantly across European countries even after accounting for the distribution of underlying risk factors

    Non-adherence to antidiabetic and cardiovascular medication as assessed by LC-MS/MS in urine and its association with kidney and cardiovascular outcomes in type 2 diabetes mellitus

    Get PDF
    Aims/hypothesis Non-adherence to medication is a frequent barrier in the treatment of patients with type 2 diabetes mellitus, potentially limiting the effectiveness of evidence-based treatments. Previous studies have mostly relied on indirect adherence measures to analyse outcomes based on adherence. The aim of this study was to use LC-MS/MS in urine—a non-invasive, direct and objective measure—to assess non-adherence to cardiometabolic drugs and analyse its association with kidney and cardiovascular outcomes. Methods This cohort study includes 1125 participants from the PROVALID study, which follows patients with type 2 diabetes mellitus at the primary care level. Baseline urine samples were tested for 79 cardiometabolic drugs and metabolites thereof via LC-MS/MS. An individual was classified as totally adherent if markers for all drugs were detected, partially non-adherent when at least one marker for one drug was detected, and totally non-adherent if no markers for any drugs were detected. Non-adherence was then analysed in the context of cardiovascular (composite of myocardial infarction, stroke and cardiovascular death) and kidney (composite of sustained 40% decline in eGFR, sustained progression of albuminuria, kidney replacement therapy and death from kidney failure) outcomes. Results Of the participants, 56.3% were totally adherent, 42.0% were partially non-adherent, and 1.7% were totally non-adherent to screened cardiometabolic drugs. Adherence was highest to antiplatelet and glucose-lowering agents and lowest to lipid-lowering agents. Over a median (IQR) follow-up time of 5.10 (4.12–6.12) years, worse cardiovascular outcomes were observed with non-adherence to antiplatelet drugs (HR 10.13 [95% CI 3.06, 33.56]) and worse kidney outcomes were observed with non-adherence to antihypertensive drugs (HR 1.98 [95% CI 1.37, 2.86]). Conclusions/interpretation This analysis shows that non-adherence to cardiometabolic drug regimens is common in type 2 diabetes mellitus and negatively affects kidney and cardiovascular outcomes

    Clonal hematopoiesis of indeterminate potential and diabetic kidney disease: a nested case-control study

    Get PDF
    Introduction: The disease trajectory of diabetic kidney disease (DKD) shows a high interindividual variability not sufficiently explained by conventional risk factors. Clonal hematopoiesis of indeterminate potential (CHIP) is a proposed novel cardiovascular risk factor. Increased kidney fibrosis and glomerulosclerosis were described in mouse models of CHIP. Here, we aim to analyze whether CHIP affects the incidence or progression of DKD. Methods: A total of 1419 eligible participants of the PROVALID Study were the basis for a nested case-control (NCC) design. A total of 64 participants who reached a prespecified composite endpoint within the observation period (initiation of kidney replacement therapy, death from kidney failure, sustained 40% decline in estimated glomerular filtration rate or sustained progression to macroalbuminuria) were identified and matched to 4 controls resulting in an NCC sample of 294 individuals. CHIP was assessed via targeted amplicon sequencing of 46 genes in peripheral blood. Furthermore, inflammatory cytokines were analyzed in plasma via a multiplex assay. Results: The estimated prevalence of CHIP was 28.91% (95% CI 22.91%–34.91%). In contrast to other known risk factors (albuminuria, hemoglobin A1c, heart failure, and smoking) and elevated microinflammation, CHIP was not associated with incident or progressive DKD (hazard ratio [HR] 1.06 [95% CI 0.57–1.96]). Conclusions: In this NCC study, common risk factors as well as elevated microinflammation but not CHIP were associated with kidney function decline in type 2 diabetes mellitus
    corecore